Abstract:
An inductor with patterned ground plane is described. In one design, the inductor includes a conductor formed on a first layer and a patterned ground plane formed on a second layer under the conductor. The patterned ground plane has an open center area and a shape matching the shape of the conductor. The patterned ground plane includes multiple shields, e.g., eight shields for eight sides of an octagonal shape conductor. Each shield has multiple slots formed perpendicular to the conductor. Partitioning the patterned ground plane into separate shields and forming slots on each shield help prevent the flow of eddy current on the patterned ground plane, which may improve the Q of the inductor. Multiple interconnects couple the multiple shields to circuit ground, which may be located at the center of the conductor.
Abstract:
A multi-mode low noise amplifier (LNA) with transformer source degeneration is described. In an exemplary design, the multi-mode LNA includes first, second, and third transistors and first and second inductors. The first transistor has its source coupled to the first inductor, amplifies an input signal, and provides a first amplified signal in a first mode. The second transistor has its source coupled to the second inductor, amplifies the input signal, and provides a second amplified signal in a second mode. The third transistor has its source coupled to the second inductor. The first and third transistors receive the input signal and conduct current through the first and second inductors, respectively, in a third mode. The first transistor observes source degeneration from a transformer formed by the first and second inductors, amplifies the input signal, and provides a third amplified signal in the third mode.
Abstract:
An inductor with patterned ground plane is described. In one design, the inductor includes a conductor formed on a first layer and a patterned ground plane formed on a second layer under the conductor. The patterned ground plane has an open center area and a shape matching the shape of the conductor. The patterned ground plane includes multiple shields, e.g., eight shields for eight sides of an octagonal shape conductor. Each shield has multiple slots formed perpendicular to the conductor. Partitioning the patterned ground plane into separate shields and forming slots on each shield help prevent the flow of eddy current on the patterned ground plane, which may improve the Q of the inductor. Multiple interconnects couple the multiple shields to circuit ground, which may be located at the center of the conductor.
Abstract:
A wideband frequency generator has two or more oscillators for different frequency bands, disposed on the same die within a flip chip package. Coupling between inductors of the two oscillators is reduced by placing one inductor on the die and the other inductor on the package, separating the inductors by a solder bump diameter. The loosely coupled inductors allow manipulation of the LC tank circuit of one of the oscillators to increase the bandwidth of the other oscillator, and vice versa. Preventing undesirable mode of oscillation in one of the oscillators may be achieved by loading the LC tank circuit of the other oscillator with a large capacitance, such as the entire capacitance of the coarse tuning bank of the other oscillator. Preventing the undesirable mode may also be achieved by decreasing the quality factor of the other oscillator's LC tank and thereby increasing the losses in the tank circuit.
Abstract:
A wideband frequency generator has two or more oscillators for different frequency bands, disposed on the same die within a flip chip package. Coupling between inductors of the two oscillators is reduced by placing one inductor on the die and the other inductor on the package, separating the inductors by a solder bump diameter. The loosely coupled inductors allow manipulation of the LC tank circuit of one of the oscillators to increase the bandwidth of the other oscillator, and vice versa. Preventing undesirable mode of oscillation in one of the oscillators may be achieved by loading the LC tank circuit of the other oscillator with a large capacitance, such as the entire capacitance of the coarse tuning bank of the other oscillator. Preventing the undesirable mode may also be achieved by decreasing the quality factor of the other oscillator's LC tank and thereby increasing the losses in the tank circuit.
Abstract:
An integrated circuit is described. The integrated circuit includes an inductor that has a large empty area in the center of the inductor. The integrated circuit also includes additional circuitry. The additional circuitry is located within the large empty area in the center of the inductor. The additional circuitry may include a capacitor bank, transistors, electrostatic discharge (ESD) protection circuitry and other miscellaneous passive or active circuits.
Abstract:
An assembly involves an integrated circuit die that is bonded, e.g., flip-chip bonded, to a non-semiconductor substrate by a plurality of low-resistance microbumps. In one novel aspect, at least a part of a novel high-frequency transformer is disposed in the non-semiconductor substrate where the non-semiconductor substrate is the substrate of a ball grid array (BGA) integrated circuit package. At least one of the low-resistance microbumps connects the part of the transformer in the substrate to a circuit in the integrated circuit die. At two gigahertz, the novel transformer has a coupling coefficient k of at least at least 0.4 and also has a transformer quality factor Q of at least ten. The novel transformer structure sees use in coupling differential outputs of a mixer to a single-ended input of a driver amplifier in a transmit chain of an RF transceiver within a cellular telephone.