Abstract:
A micro-mirror strip assembly having a plurality of two-dimensional micro-mirror structures with improved deflection and other characteristics is presented. In the micro-mirror structures, electrodes for electrostatic deflection are disposed on conical or quasi-conical entities that are machined, attached or molded into a substrate. Torsion sensors (244) are provided along the axes of rotation to control deflection of the quadrant deflection electrodes. The shielded sensor structure (240) includes a silicon layer (241), an insulating layer (242) and a metal layer (243). The structure further includes a sensor implant resistor (244) in the silicon layer (241) and a shield (245) that is applied over the sensor implant resistor (244) to stabilise sensor output and eliminate light sensitivity.
Abstract:
A monolithic single crystal Si rate-gyro is disclosed, consisting in the preferred embodiment of an outer torsional frame (101), self-resonating with a substantial amplitude, as controlled by a four-terminal piezo torsion sensor (111), connected to an inner frame (105) by torsion hinges (103). The inner frame itself is connected to a fixed inner post (117), by a set of torsion hinges (107), defining an axis of rotation perpendicular to the first axis. Rotation of the axis of oscillation of the outer body causes the moving mass and the inner frame to tilt and oscillate at the outer frequency due to Coriolis forces, thereby periodically deforming the inner hinges in torsion. These inner hinges are likewise equipped with a four-terminal piezo voltage torsion sensor (115), giving an indication of the rate of rotation of the sensor. The design allows for good sensitivity, due to the substantial swing of the outer oscillator, its high moment of inertia, excellent Si spring characteristics, and excellent sensitivity of the torsional sensors.
Abstract:
A microfluidic delivery system (20) and microfluidic system (100) control flows of a liquid or a gas through elongated capillaries (62, 126) that are enclosed along at least one surface by a layer (42, 114) of a malleable material. An electrically-powered actuator included in the systems (20, 100) extends toward or retracts a blade from the layer (42, 114) of a malleable material to either occlude or open capillaries. Reservoirs (46, 124) included in a pouch (22, 108) together with the capillaries (62, 126) supply fluids whose flow is controlled by movement of the blades. The microfluidic system (100) permits dispensing at will, under microprocessor control at predetermined flow rates, liquids, samples, chemicals, reagents and body fluids, and mixing them together and/or reacting for diagnostic medical or analytical tests, DNA sequencing, etc. The microfluidic delivery system (20) and a microfluidic system (100) may be used for clinical testing, environmental or forensic testing, analytical chemistry, fine chemistry, biological sciences, combinatorial synthesis, etc.
Abstract:
A hearing aid system (10) includes an acoustic driver (24, 23, 28 or 84, 82) that is located at the distal end of the external ear (12) canal furthest from the auricle (14) in close proximity to the eardrum (16) for stimulating the eardrum (16) acoustically. The hearing aid system (10) also includes an acoustic-absorbing stop (34) juxtaposed with the acoustic driver (24, 23, 28 or 84, 82} that is located distal from the eardrum (16), An excitation means (62) included in the hearing aid system (10) energizes operation of the acoustic driver (24, 23, 28 or 84, 82) responsive to an electrical signal received from a microphone (42) that converts sound impinging upon the auricle (14) into the electrical signal.
Abstract:
A fenestration (36) piercing the otic capsule bone of the cochlea (34) receives a therapeutic appliance, such as a microactuator (78), plug (92), micropump for drug or therapeutic agent delivery, electrode (102), etc. Disclosed are several different ways of achieving a "water tight" seal between the otic capsule bone and the therapeutic appliance. Also disclosed are specific ways of implanting the therapeutic appliance both with and without a sheath (72) lining the wall of the fenestration (36) formed using specialized surgical burrs (122, 124, 162, 164). The burrs (122, 124, 162, 164) permit safely fenestrating the otic capsule bone adjacent to the scala tympani (44) of the cochlea (34) without damaging the basilar membrane (52) or organ of cordi. The invention disclosed herein may also be adopted for safely fenestrating other areas of the inner ear such as the scala vestibuli (42), bony labyrinth of semicircular canals, or walls of the vestibule, or perhaps even the oval or round windows thereof.
Abstract:
A micro-mirror strip assembly having a plurality of two-dimensional micro-mirror structures with improved deflection and other characteristics is presented. In the micro-mirror structures, electrodes for electrostatic deflection are disposed on conical or quasi-conical entities that are machined, attached or molded into a substrate. The electrodes are quartered approximately parallel to or offset by 45 degrees from rotational axes to form quadrants. Torsion sensors are provided along the axes of rotation to control deflection of the quadrant deflection electrodes.
Abstract:
Forming micro-probe tips for an atomic force microscope, a scanning tunneling microscope, a beam electron emission microscope, or for field emission, by first thinning a tip (11) of a first material, such as silicon. The tips (11) are then reacted with a second material, such as atoms from an organic or ammonia vapor, at a temperature of about 1000 DEG C +/- 200 DEG C and vacuum conditions for several minutes. Vapors such as methane, propane or acetylene will be converted to SiC or WC while ammonia will be converted to Si3N4. The converted material will have different physical, chemical and electrical properties. For example, a SiC tip will be superhard, approaching diamond in hardness. Electrically conductive tips are suitable for field emission.
Abstract:
A system and a method for producing solid nano-particles of a material by dispersing very small droplets of liquid in which the material is dissolved. The nano-particles being particularly useful for geoengineering for increasing cloud reflectivity. The system includes: a. pump for supplying the liquid; and b a plurality of orifices included in at least one sprayer. The liquid upon being supplied to said sprayer forming droplets after flowing through the sprayer's orifices. The sprayer is selected from a group consisting of: a. domed sprayers; b. cusped cone sprayers; and c. Taylor cone sprayers (132). The method includes the steps of: a. both pressurizing and heating the liquid so the liquid is in a supercritical state wherein the liquid becomes like a dense gas and the surface tension approaches zero; and b dispersing the pressurized and heated liquid in the supercritical state through an orifice.
Abstract:
A system and a method for producing solid nano-particles of a material by dispersing very small droplets of liquid in which the material is dissolved. The nano-particles being particularly useful for geoengineering for increasing cloud reflectivity. The system includes: a. pump for supplying the liquid; and b a plurality of orifices included in at least one sprayer. The liquid upon being supplied to said sprayer forming droplets after flowing through the sprayer's orifices. The sprayer is selected from a group consisting of: a. domed sprayers; b. cusped cone sprayers; and c. Taylor cone sprayers (132). The method includes the steps of: a. both pressurizing and heating the liquid so the liquid is in a supercritical state wherein the liquid becomes like a dense gas and the surface tension approaches zero; and b dispersing the pressurized and heated liquid in the supercritical state through an orifice.
Abstract:
A set of fenestration burrs, for fenestrating otic capsule bone (34), includes an initial burr (150) and a sequence of fenestration polishing burrs (180). A polishing burr (152, 1521), of each of the burrs (150, 180), carries at least one spiraling flute (166, 166'). Fenestrations (36) piercing the bone (34) formed using the burrs (150, 180) exhibit uniform diameters while excluding bone dust from the inner ear. An implantable casing (72) includes a hollow collar (76) from which projects a hollow sleeve (74) receivable into the fenestration (36). The casing (72) is secured there by at least one prong (92, 102) jutting from the sleeve (74). A therapeutic appliance (134) is insertable into the casing (72). A flange (116) extending from one end of the sleeve (74) carries at least one L-shaped slot (122) open at one end and extending circumferentially around the flange (116).