Abstract:
A method of depositing and crystallizing materials on a substrate Is disclosed, in a particular embodiment, the method may include creating a plasma having deposition- misted species and energy-carrying species. During a first time period, no bias voltage is applied to the substrate, and species are deposited on the substrate via plasma deposition. During a second lime period, a voltage is applied to the substrate, which attracts ions to and into the deposited species, thereby causing the deposited layer to crystallize. This process can be repeated until an adequate thickness is achieved, in another embodiment, the bias voltage or bias pulse duration can be varied to change the amount of crystallization that occurs. In another embodiment, a dopant may be used to dope the deposited layers.
Abstract:
Methods of controlling the diffusion of a dopant in a solar cell are disclosed. A second species is used in conjunction with the dopant to modify the diffusion region. For example, phosphorus and boron both diffuse by pairing with interstitial silicon atoms. Thus, by controlling the creation and location of these interstitials, the diffusion rate of the dopant can be controlled. In one embodiment, a heavier element, such as germanium, argon or silicon, is used to create interstitials. Because of the presence of these heavier elements, the dopant diffuses deeper into the substrate. In another embodiment, carbon is implanted. Carbon reduces the number of interstitials, and thus can be used to limit the diffusion of the dopant. In another embodiment, a lighter element, such as helium is used to amorphize the substrate. The crystalline-amorphous interface created limits diffusion of the dopant into the substrate.
Abstract:
A plasma processing apparatus includes a process chamber, a source configured to generate a plasma in the process chamber, and a platen configured to support a workpiece in the process chamber. The platen is biased with a pulsed platen signal having pulse ON and OFF time periods to accelerate ions from the plasma towards the workpiece during the pulse ON time periods and not the pulse OFF time periods. A plate is positioned in the process chamber. The plate is biased with a plate signal to accelerate ions from the plasma towards the plate to cause an emission of secondary electrons from the plate during at least a portion of one of the pulse OFF time periods of the pulsed platen signal to at least partially neutralize charge accumulation on the workpiece.
Abstract:
A technique for atomic layer deposition is disclosed. In one particular exemplary embodiment, the technique may be realized by a method for forming a strained thin film. The method may comprise supplying a substrate surface with one or more precursor substances having atoms of at least one first species and atoms of at least one second species, thereby forming a layer of the precursor substance on the substrate surface. The method may also comprise exposing the substrate surface to plasma-generated metastable atoms of a third species, wherein the metastable atoms desorb the atoms of the at least one second species from the substrate surface to form an atomic layer of the at least one first species. A desired amount of stress in the atomic layer of the at least one first species may be achieved by controlling one or more parameters in the atomic layer deposition process.
Abstract:
A plasma processing apparatus and method are disclosed which improve the repeatability of various plasma processes. The actual implanted dose is a function of implant conditions, as well as various other parameters. This method used knowledge of current implant condition, as well as information about historical data to improve repeatability. In one embodiment, information about plasma composition and dose per pulse is used to control one or more operating parameters in the plasma chamber, in another embodiment, this information is combined with historical data to control one or more operating parameters m the plasma chamber.
Abstract:
A method of processing a substrate having horizontal and non-horizontal surfaces is disclosed. The substrate is implanted with particles using an ion implanter. During the ion implant, due to the nature of the implant process, a film may be deposited on the surfaces, wherein the thickness of this film is thicker on the horizontal surfaces. The presences of this film may adversely alter the properties of the substrate. To rectify this, a second process step is performed to remove the film deposited on the horizontal surfaces. In some embodiments, an etching process is used to remove this film. In some embodiments, a material modifying step is used to change the composition of the material comprising the film. This material modifying step may be instead of, or in addition to the etching process.
Abstract:
A plasma processing tool is used to deposit material on a workpiece. For example, a method for conformal deposition of material is disclosed, in this embodiment, the plasma sheath shape is modified to allow material to impact the workpiece at a range of incident angles. By varying this range of incident angles over time, a variety of different features can be deposited onto. In another embodiment, a plasma processing tool is used to etch a workpiece. In this embodiment, the plasma sheath shape is altered to allow ions to impact the workpiece at a range of incident angles. By varying this range of incident angles over time, a variety of differently shaped features can be created.
Abstract:
Techniques for atomic layer deposition (ALD) are disclosed, in one particular exemplary embodiment, the techniques may be realized as a system for ALD comprising a plurality of reactors in a stacked configuration, wherein each reactor comprises a wafer holding portion for holding a target wafer, a gas assembly coupled to the plurality of reactors and configured to provide at least one gas to at least one of the plurality of reactors, and an exhaust assembly coupled to the plurality of reactors and configured to exhaust the at least one gas from the at least one of the plurality of reactors. The gas assembly may further comprise a valve assembly coupled to each of the first gas inlet, the second gas inlet, and the third gas inlet, where the valve assembly is configured to selectively release at least one of the first gas, the second gas, and the third gas.
Abstract:
A method of controlling a plasma doping process using a time-of-flight ion detector includes generating a plasma comprising dopant ions in a plasma chamber proximate to a platen supporting a substrate. The platen is biased with a bias voltage waveform having a negative potential that attracts ions in the plasma to the substrate for plasma doping. A spectrum of ions present in the plasma is measured as a function of ion mass with a time-of-flight ion detector. The total number ions impacting the substrate is measured with a Faraday dosimetry system. An implant profile is determined from the measured spectrum of ions. An integrated dose is determined from the measured total number of ions and the calculated implant profile. At least one plasma doping parameter is modified in response to the calculated integrated dose.
Abstract:
An apparatus for depositing a coating may comprise a first processing chamber configured to deposit a first reactant as a reactant layer on a substrate during a first time period. A second processing chamber may be configured to direct ions incident on the substrate at a second time and configured to deposit a second reactant on the substrate during a second time period, wherein the second reactant is configured to react with the reactant layer.