Abstract:
A method for identifying cracks in non-planar substrates is herein disclosed. Images of a substrate in a relaxed state are captured and assessed to identify cracks, if any. Assessment may be conducted optically using broad band illumination, laser illumination, or infrared illumination. Mechanisms for carrying out the method are also disclosed.
Abstract:
A mechanism for localizing a substrate relative to a projection camera or other apparatus over large travel distances is described. The mechanism includes one or more trucks that move with the stage in a primary direction and remain stationary when the stage moves in an ancillary direction. The position of the trucks, together with relative distances between the truck(s) and a stage on which the substrate is supported facilitates alignment.
Abstract:
A method of assessing functionality of a probe card includes providing a probe card analyzer without a probe card interface, removably coupling a probe card having probes to a support plate of the probe card analyzer, aligning a sensor head of the probe card analyzer with the probe card, and measuring a component of the probes with the sensor head.
Abstract:
A mechanism for handling substrates such as semiconductor wafers is disclosed. The mechanism supports the substrate in a tilted orientation to ensure that undesirable contact between a bowed substrate and the mechanism does not occur. The structure that supports the substrate in a tilted orientation may be fixed or adjustable. A sensor may be provided to measure and/or monitor a distance between a substrate and the mechanism. Alternatively, a sensor for determining contact between the substrate and the mechanism may be provided.
Abstract:
A focus height sensor in an optical system for inspection of semiconductor devices includes a sensor beam source that emits a beam of electromagnetic radiation. A reflector receives the beam of electromagnetic radiation from the sensor beam source and directs the beam toward a surface of a semiconductor device positioned within a field of view of the optical system. The reflector is positioned to receive at least a portion of the beam back from the surface of the semiconductor device to direct the returned beam to a sensor. The sensor receives the returned beam and outputs a signal correlating to a position of the surface within the field of view along an optical axis of the optical system.
Abstract:
A method for evaluating a manufacturing process is described. The method includes generating an optical pump beam pulse and directing the optical pump beam pulse to a surface of a sample. A probe pulse is generated and directed the probe pulse to the surface of the sample. A probe pulse response signal is detected. A change in the probe pulse varying in response to the acoustic signal forms the probe pulse response signal. An evaluation of one or more manufacturing process steps used to create the sample is made based upon the probe pulse response signal. Additionally the method may be used for process control of a CMP process. Apparatus are also described.
Abstract:
A system for monitoring thin-film fabrication processes is herein disclosed. Diffraction of incident light is measured and the results are compared to a predictive model based on at least one idealized or nominal structure. The model and/or the measurement of diffracted incident light may be modified using the output of one or more additional metrology systems.
Abstract:
A semiconductor wafer measuring device including a wafer mover adapted to move a semiconductor wafer; a measurement head adapted to scan a surface of the semiconductor wafer as the semiconductor wafer is moved by the wafer mover; and a controller. The controller is adapted to control movement of the wafer mover to provide a first scanning segment of a first portion of the surface of the semiconductor wafer without rotating the semiconductor wafer during the first scanning segment, a second scanning segment of a second different portion of the surface of the semiconductor wafer without rotating the semiconductor wafer during the second scanning segment; and rotating the semiconductor wafer between the first and second scanning segments.
Abstract:
A system comprising a means for generating an optical pump beam pulse (15) and for directing the optical pump beam pulse (15) to a first area of a surface of a sample (27) having a plurality of film layers to generate an acoustic signal, a means for generating an x-ray probe pulse (17) and for directing the x-ray probe pulse (17) to a second area of the surface, a means for detecting (33) an intensity of a diffracted x-ray probe pulse (17') the intensity varying in response to the acoustic signal to form a probe pulse response signal, and a means for calculating (51) an expected transient response to a theoretical acoustic signal propagated through a model of the sample and fitting the probe pulse response to the transient response to derive at least one characteristic of the sample (27).
Abstract:
An optical system includes both a microspot broadband spectroscopic ellipsometer (410) and a photoacoustic film thickness measurement system (415) that are supplied laser light by the same laser light source. One of the systems makes a measurement, the result of which is used to adjust a parameter of the other system; e.g. the ellipsometer (410) measures thickness and the photoacoustic system (415) uses the thickness result to measure the speed of the sound. In one version, the ellipsometer converts the laser beam to a broad-spectrum beam that provides higher intensity .