Abstract:
The present invention generally relates to systems and methods for acquiring multiple spectra from a sample, for example, a microfluidic sample. In some aspects of the invention, spectra from a series of locations within a sample are recorded and analyzed, and optionally correlated with an image of the sample. The spectra can be obtained by passing a plurality of light beams through a sample, e.g., using an array of microlenses, diffracting the light beams passing through the sample with a transmission grating, before or after passing the light through the sample, and detecting the resulting light, e.g., as an image. The light beams may pass through the sample before or after passing through the transmission grating. The image can appear as an array of discrete spectra, where each spectrum is associated with a region of the sample where a light beam passed through the sample. The spectra can be analyzed to determine information about the region where the light beam passed through the sample. In some cases, the array of microlenses may be movable and/or replaceable with a second array of microlenses. Also, in some instances, the transmission grating may be movable and/or replaceable with a second transmission grating.
Abstract:
The present invention relates generally to microfluidic structures, and more specifically, to microfluidic structures and methods including meandering and wide channels. Microfluidic systems can provide an advantageous environment for performing various reactions and analyses due to a reduction in sample and reagent quantities that are required, a reduction in the size of the operating system, and a decrease in reaction time compared to conventional systems. Unfortunately, the small size of microfluidic channels can sometimes result in difficulty in detecting a species without magnifying optics (such as a microscope or a photomultiplier). A series of tightly packed microchannels, i.e., a meandering region, or a wide channel having a dimension on the order of millimeters, can serve as a solution to this problem by creating a wide measurement area. Although this invention mainly describes the use of meandering and wide channels in heterogeneous immunoassays on a microfluidic chip, this invention could be used for amplifying optical signals for other types of reactions and/or assays.
Abstract:
Microfabricated microvalves may be used with liquid-filled control channels and actuated using compact and battery-powered components, without the need for heavier or fixed infrastructure. The disclosed embodiments include microvalves with on-off fluid control with relatively fast response times, coordinated switching of multiple valves, and operation of a biological (enzyme- substrate) assay in a handheld configuration.
Abstract:
An extracellular matrix (ECM)-based scaffold suitable for artificial skin as well as other structures can be formed using a bioreactor fabricated with a pattern that introduces desired structural features, on the microscale and/or nanoscale, to ECM-precursors gelled in the bioreactor. The bioreactor can produce a finely patterned scaffold - over clinically relevant size scales - sufficiently robust for routine handling. Preformed ECM-based scaffolds can also have microscale and/or nano-scale structural features introduced into a surface thereof. ECM-based scaffolds may be formed with well-defined structural features via microetching and/or remodeling via 'contact degradation.' A surface-activated pattern can be used to degrade the ECM-based scaffold at contact regions between the pattern and the ECM. The produced ECM-based scaffolds can have structures of dimensions conducive to host tissue ingrowth while preserving the fibrous structure and ligand density of natural ECMs.
Abstract:
Methods and systems forming biocompatible materials are disclosed herein. Forming a biocompatible material may include contacting a liquid, having a linking material, with an adjoining material having embedded therein a nucleating material that causes the linking material to nucleate and grow into the liquid. After a time sufficient to cause the linking material to grow substantially from the nucleating material into a space occupied by the liquid, the liquid may be solidified to form a solid such that the linking material secures the solid to the adjoining material.
Abstract:
An extracellular matrix (ECM)-based scaffold suitable for artificial skin as well as other structures can be formed using a bioreactor fabricated with a pattern that introduces desired structural features, on the microscale and/or nanoscale, to ECM-precursors gelled in the bioreactor. The bioreactor can produce a finely patterned scaffold - over clinically relevant size scales - sufficiently robust for routine handling. Preformed ECM-based scaffolds can also have microscale and/or nano-scale structural features introduced into a surface thereof. ECM-based scaffolds may be formed with well-defined structural features via microetching and/or remodeling via 'contact degradation.' A surface-activated pattern can be used to degrade the ECM-based scaffold at contact regions between the pattern and the ECM. The produced ECM-based scaffolds can have structures of dimensions conducive to host tissue ingrowth while preserving the fibrous structure and ligand density of natural ECMs.
Abstract:
Fluidic connectors, methods, and devices for performing analyses (e.g., immunoassays) in microfluidic systems are provided. In some embodiments, a fluidic connector having a fluid path is used to connect two independent channels formed in a substrate so as to allow fluid communication between the two independent channels. One or both of the independent channels may be pre-filled with reagents (e.g., antibody solutions, washing buffers and amplification reagents), which can be used to perform the analysis. These reagents may be stored in the channels of the substrate for long periods amounts of time (e.g., 1 year) prior to use. Prior to connection of the fluid connector and the substrate, the fluid path may be filled with a sample (e.g., blood). The sample may be obtained, for example, by pricking a finger of a user until blood is drawn from the finger into the fluid path (e.g., by capillary forces). Upon connection of the fluidic connector and the channels of the substrate, the sample can pass through a reaction area within the first channel of the substrate. This process can allow components of the sample to interact with components disposed in the reaction area. Afterwards, reagents from the second channel can flow to the reaction area via the fluid path, allowing components in the reaction area to be processed (e.g., amplified to produce detectable signal). Components in the reaction area can then be determined using various methods of detection.
Abstract:
Fluidic connectors, methods, and devices for performing analyses (e.g., immunoassays) in microfluidic systems are provided. In some embodiments, a fluidic connector having a fluid path is used to connect two independent channels formed in a substrate so as to allow fluid communication between the two independent channels. One or both of the independent channels may be pre-filled with reagents (e.g., antibody solutions, washing buffers and amplification reagents), which can be used to perform the analysis. These reagents may be stored in the channels of the substrate for long periods amounts of time (e.g., 1 year) prior to use. Prior to connection of the fluid connector and the substrate, the fluid path may be filled with a sample (e.g., blood). The sample may be obtained, for example, by pricking a finger of a user until blood is drawn from the finger into the fluid path (e.g., by capillary forces). Upon connection of the fluidic connector and the channels of the substrate, the sample can pass through a reaction area within the first channel of the substrate. This process can allow components of the sample to interact with components disposed in the reaction area. Afterwards, reagents from the second channel can flow to the reaction area via the fluid path, allowing components in the reaction area to be processed (e.g., amplified to produce detectable signal). Components in the reaction area can then be determined using various methods of detection.
Abstract:
The present invention generally relates to systems and methods for acquiring multiple spectra from a sample, for example, a microfluidic sample. In some aspects of the invention, spectra from a series of locations within a sample are recorded and analyzed, and optionally correlated with an image of the sample. The spectra can be obtained by passing a plurality of light beams through a sample, e.g., using an array of microlenses, diffracting the light beams passing through the sample with a transmission grating, before or after passing the light through the sample, and detecting the resulting light, e.g., as an image. The light beams may pass through the sample before or after passing through the transmission grating. The image can appear as an array of discrete spectra, where each spectrum is associated with a region of the sample where a light beam passed through the sample. The spectra can be analyzed to determine information about the region where the light beam passed through the sample. In some cases, the array of microlenses may be movable and/or replaceable with a second array of microlenses. Also, in some instances, the transmission grating may be movable and/or replaceable with a second transmission grating.
Abstract:
Method and device for storing and/or delivering fluids, wherein at least a first and a second fluid, such as chemical or biochemical reagents or rinse solutions, are maintained separately from each other in a common vessel and transferred in series from the vessel to a reaction site to carry out a predetermined chemical or biochemical reaction. Separation may be achieved by interposing a third fluid, e.g., a gaseous fluid plug, between the first and second fluids.