Abstract:
Intraluminal scaffold assembly implantable in a body lumen of a patient to manipulate a valve of the lumen is provided. The intraluminal scaffold assembly includes an intraluminal scaffold (1100), an elongated core member (1200) coupled with the intraluminal scaffold having a length sufficient to traverse a valve in a body lumen with the intraluminal scaffold positioned proximate the valve. The intraluminal scaffold assembly can further include one or more additional intraluminal scaffolds, a weighted element (1201) or an active element that is coupled with the elongated core member. A system including a delivery system and the intraluminal scaffold assembly, as well as methods of delivering the intraluminal scaffold assembly and using the intraluminal scaffold assembly to manipulate a valve in a body lumen, is also provided.
Abstract:
A porous balloon (14) or other catheter structure is formed by creating specific size pores (24) for delivering an agent to a body lumen (18). The pores can be created by passing matter or energy through the surface of the catheter structure, as by a laser (35) or a projectile (51). In the case of laser, the catheter structure can be reversed so that the inner surface becomes the outer surface to convert diverging pores into converging pores. In the case of projectiles, a pore size can be achieved by selecting an appropriate size and shaped projectile to obtain the desired characteristic. Alternatively, a material to make the catheter structure can include impurities (29,59) that can be removed once the catheter structure is set, leaving pores where the material formed around the impurities.
Abstract:
An agent delivery catheter having two or more axially spaced balloons and an inflation bridge providing fluid communication between the two balloons. The catheter generally has a proximal balloon, a distal balloon, and a tube defining an inflation bridge lumen which is located in part within the inflatable interiors of the balloons, and which extends therebetween, and which has a proximal port within the proximal balloon interior and a distal port within the distal balloon interior to thereby provide for inflation of the distal balloon by placing the distal balloon interior in fluid communication with the proximal balloon interior of the shaft.
Abstract:
An apparatus and method for purifying a forensic sample using an automated extraction and purification system includes optical tweezers; an input channel through which the sample is introduced; a chamber which receives the sample from the input channel; a collection channel through which selected particles of the sample are removed; and an output through which unselected particles of the sample are removed. At least one buffer input channel is provided. The input channel may allow sedimentation of the sample into the chamber by gravity. In another arrangement, the system includes an optical trapping system; a first channel through which the sample is introduced; a second channel through which buffer is introduced; wherein the optical tweezers are used to move selected particles of the sample from the first channel to the second channel. The selected particles may be sperm. The optical tweezers preferably utilize holographic optical trapping.