Abstract:
Embodiments herein generally relate to polishing pads and methods of forming polishing pads. A polishing pad includes a plurality of polishing elements. Each polishing element comprises an individual surface that forms a portion of a polishing surface of the polishing pad and one or more sidewalls extending downwardly from the individual surface to define a plurality of channels disposed between the polishing elements. Each of the polishing elements has a plurality of pore-features formed therein. Each of the polishing elements is formed of a pre- polymer composition and a sacrificial material composition. In some cases, a sample of the cured pre-polymer composition has a glass transition temperature (Tg) of about 80 °C or greater. A storage modulus (E') of the cured pre-polymer composition at a temperature of 80 °C (E'80) can be about 200 MPa or greater.
Abstract:
A method of depositing a coating and a layered structure is provided. A coating is deposited on a substrate to make a layered structure, such that an interface between the coating and the substrate is formed. The coating includes silicon, oxygen, and carbon, where the carbon doping in the coating increases between the interface and the top surface of the coating. The top surface of the coating is inherently hydrophobic and icephobic, and reduces the wetting of water or ice film on the layered structure, without requiring reapplication of the coating.
Abstract:
Embodiments of the present disclosure provide for polishing pads that include at least one endpoint detection (EPD) window disposed through the polishing pad material, and methods of forming thereof. In one embodiment a method of forming a polishing pad includes forming a first layer of the polishing pad by dispensing a first precursor composition and a window precursor composition, the first layer comprising at least portions of each of a first polishing pad element and a window feature, and partially curing the dispensed first precursor composition and the dispensed window precursor composition disposed within the first layer.
Abstract:
A method of fabricating a polishing layer of a polishing pad includes successively depositing a plurality of layers with a 3D printer, each layer of the plurality of polishing layers deposited by ejecting a base material from a first nozzle and an additive material from a second nozzle and solidifying the base and additive material to form a solidified pad material.
Abstract:
A polishing article manufacturing system includes a feed section and a take-up section, the take-up section comprising a supply roll having a polishing article disposed thereon for a chemical mechanical polishing process, a print section comprising a plurality of printheads disposed between the feed section and the take-up section, and a curing section disposed between the feed section and the take-up section, the curing section comprising one or both of a thermal curing device and an electromagnetic curing device.
Abstract:
A polishing pad for chemical mechanical polishing is provided. The polishing pad includes a base region having a supporting surface. The polishing pad further includes a plurality of polishing features forming a polishing surface, the polishing surface opposing the supporting surface. The polishing pad further includes one or more channels formed in an interior region of the polishing pad and extending at least partly around a center of the polishing pad, wherein each channel is fluidly coupled to at least one port.
Abstract:
A method and apparatus for conditioning a polishing pad is provided. In one embodiment, a pad conditioning device for a substrate polishing process is provided. The pad conditioning device includes an optical device coupled to a portion of a polishing station adjacent a polishing pad, the optical device comprising a laser emitter adapted to emit a beam toward a polishing surface of the polishing pad, the beam having a wavelength range that is substantially non-reactive with a polishing fluid utilized in the polishing process, but is reactive with the polishing pad.
Abstract:
The present disclosure relates to retaining rings that include tunable chemical, material and structural properties, improved structural and fluid transport configurations and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a retaining ring with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure provide an advanced retaining ring that has discrete features and geometries, formed from at least two different materials that are formed from one or more polymers. The layers and/or regions of the advanced retaining ring may include a composite material structure, such as a polymer that contains at least one filler, such as metals, semimetal oxides, carbides, nitrides and/or polymer particles.
Abstract:
Embodiments disclosed herein provide methods of forming bond pad redistribution layers (RDLs) in a fan-out wafer level packaging (FOWLP) scheme using an additive manufacturing process. In one embodiment, a method of forming a redistribution layer includes positioning a carrier substrate on a manufacturing support of an additive manufacturing system, the carrier substrate including a plurality of singulated devices, detecting one or more fiducial features corresponding to each of the plurality of singulated devices, determining actual positions of each of the plurality of singulated devices relative to one or more components of the additive manufacturing system, generating printing instructions for forming a patterned dielectric layer based on the actual positions of each of the plurality of singulated devices, and forming the patterned dielectric layer using the printing instructions.
Abstract:
Implementations disclosed herein generally relate to polishing articles and methods for manufacturing polishing articles used in polishing processes. More specifically, implementations disclosed herein relate to porous polishing pads produced by processes that yield improved polishing pad properties and performance, including tunable performance. Additive manufacturing processes, such as three-dimensional printing processes provides the ability to make porous polishing pads with unique properties and attributes.