Abstract:
Embodiments described herein relate to the rapid thermal processing of substrates. A fiber coupled laser diode array is provided in an optical system configured to generate a uniform irradiance pattern on the surface of a substrate. A plurality of individually controllable laser diodes are optically coupled via a plurality of fibers to one or more lenses. The fiber coupled laser diode array generates a Gaussian radiation profile which is defocused by the lenses to generate a uniform intensity image. In one embodiment, a field stop is disposed within the optical system.
Abstract:
Embodiments of the present disclosure relate to mount apparatuses for digital micromirror devices of digital lithography systems and methods of mounting the digital micromirror devices. The mount apparatuses described herein retain spatial light modulators, such as DMDs. The mount apparatus enables the flattening of the DMD by providing a force such that the pair of contact pads contact the DMD. The DMD is positioned in a mounting frame of the mount apparatus. Contact pads of the mounting frame are operable to apply pressure to the DMD.
Abstract:
Embodiments of the present disclosure generally relate to apparatus and methods for semiconductor processing, more particularly, to a thermal process chamber. The thermal process chamber may include a substrate support, a first plurality of heating elements disposed over the substrate support, and one or more high-energy radiant source assemblies disposed over the first plurality of heating elements. The one or more high-energy radiant source assemblies are utilized to provide local heating of cold regions on a substrate disposed on the substrate support during processing. Localized heating of the substrate improves temperature profile, which in turn improves deposition uniformity.
Abstract:
Apparatus and methods for combining beams of amplified radiation are disclosed. A beam combiner has a collimating optic positioned to receive a plurality of coherent radiation beams at a constant angle of incidence with respect to an optical axis of the collimating optic. The respective angles of incidence may also be different in some embodiments. The collimating optic has an optical property that collimates the beams. The optical property may be refractive or reflective, or a combination thereof. A collecting optic may also be provided to direct the plurality of beams to the collimating optic. The beam combiner may be used in a thermal processing apparatus to combine more than two beams of coherent amplified radiation, such as lasers, into a single beam.
Abstract:
Apparatus, system, and method for thermally treating a substrate. A source of pulsed electromagnetic energy can produce pulses at a rate of at least 100 Hz. A movable substrate support can move a substrate relative to the pulses of electromagnetic energy. An optical system can be disposed between the energy source and the movable substrate support, and can include components to shape the pulses of electromagnetic energy toward a rectangular profile. A controller can command the source of electromagnetic energy to produce pulses of energy at a selected pulse rate. The controller can also command the movable substrate support to scan in a direction parallel to a selected edge of the rectangular profile at a selected speed such that every point along a line parallel to the selected edge receives a predetermined number of pulses of electromagnetic energy.
Abstract:
Embodiments described herein relate to thermal processing of semiconductor substrates. More specifically, embodiments described herein relate to laser thermal processing of semiconductor substrates. In certain embodiments, a uniformizer is provided to spatially and temporally decorrelate a coherent light image.
Abstract:
Embodiments of the invention generally relate to laser annealing systems with optics for imaging a pattern on a substrate. The optics may comprise an aperture or plurality of apertures which shape an image to be exposed on a surface of a substrate. The image may be determined by the shape of an aperture within the optics system.
Abstract:
Embodiments of the invention provides an apparatus including a substrate support, a source of laser radiation emitting laser radiation along an optical path, and an illumination optics disposed along the optical path. The illumination optics includes a set of slow-axis and fast-axis lenses. The apparatus further includes a homogenizer disposed between of the illumination optics and the substrate support along the optical path. The homogenizer includes a first and a second micro-optic lenslet arrays of cylindrical lenses, wherein the second micro-optic lenslet array of cylindrical lenses has a relatively larger lenslet pitch than that of the first micro-optic lenslet array of cylindrical lenses, and lenslet axes of the first micro-optic lenslet array and lenslet axes of the second micro-optic lenslet array are oriented along an axis that is parallel to a fast axis of the source of laser radiation.