Abstract:
Embodiments of the present invention generally relate to apparatus for and methods of measuring and monitoring the temperature of a substrate having a 3D feature thereon. The apparatus include a light source for irradiating a substrate having a 3D feature thereon, a focus lens for gathering and focusing reflected light, and an emissometer for detecting the emissivity of the focused reflected light. The apparatus may also include a beam splitter and an imaging device. The imaging device provides a magnified image of the diffraction pattern of the reflected light. The method includes irradiating a substrate having a 3D feature thereon with light, and focusing reflected light with a focusing lens. The focused light is then directed to a sensor and the emissivity of the substrate is measured. The reflected light may also impinge upon an imaging device to generate a magnified image of the diffraction pattern of the reflected light.
Abstract:
Methods and apparatus for radiation processing of semiconductor substrates using microwave or millimeter wave energy are provided. The microwave or millimeter wave energy may have a frequency between about 600 MHz and about 1 THz. Alternating current from a magnetron is coupled to a leaky microwave emitter that has an inner conductor and an outer conductor, the outer conductor having openings with a dimension smaller than a wavelength of the emitted radiation. The inner and outer conductors are separated by an insulating material. Interference patterns produced by the microwave emissions may be uniformized by phase modulating the power to the emitter and/or by frequency modulating the frequency of the power itself. Power from a single generator may be divided to two or more emitters by a power divider.
Abstract:
A method and apparatus for decorrelating coherent light from a light source, such as a pulsed laser, in both time and space in an effort to provide intense and uniform illumination are provided. For some embodiments employing a pulsed light source, the output pulse may be stretched relative to the input pulse width. The methods and apparatus described herein may be incorporated into any application where intense, uniform illumination is desired, such as pulsed laser annealing, welding, ablating, and wafer stepper illuminating.
Abstract:
Device for processing a substrate are described herein. Devices can include a radiation source and an aperture positioned to receive radiant energy from the radiation source. The aperture can include one or more members, and one or more interfering areas, wherein the interfering areas surround a transmissive area. The one or more structures can affect transmission of radiant energy through a portion of the transmissive area of the aperture. Structures disposed on the aperture can reduce or redirect transmission to provide for more uniform overall transmission of radiant energy through the aperture.
Abstract:
Apparatus and methods for combining beams of amplified radiation are disclosed. A beam combiner has a collimating optic positioned to receive a plurality of coherent radiation beams at a constant angle of incidence with respect to an optical axis of the collimating optic. The respective angles of incidence may also be different in some embodiments. The collimating optic has an optical property that collimates the beams. The optical property may be refractive or reflective, or a combination thereof. A collecting optic may also be provided to direct the plurality of beams to the collimating optic. The beam combiner may be used in a thermal processing apparatus to combine more than two beams of coherent amplified radiation, such as lasers, into a single beam.
Abstract:
The present invention generally relates to an optical system that is able to reliably deliver a uniform amount of energy across an anneal region contained on a surface of a substrate. The optical system is adapted to deliver, or project, a uniform amount of energy having a desired two-dimensional shape on a desired region on the surface of the substrate. Typically, the anneal regions may be square or rectangular in shape. Generally, the optical system and methods of the present invention are used to preferentially anneal one or more regions found within the anneal regions by delivering enough energy to cause the one or more regions to re-melt and solidify.
Abstract:
Methods for cleaning substrate surfaces utilized in SOI technology are provided. In one embodiment, the method for cleaning substrate surfaces includes providing a first substrate and a second substrate, wherein the first substrate has a silicon oxide layer formed thereon and a cleavage plane defined therein, performing a wet cleaning process on the surfaces of the first substrate and the second substrate, and bonding the cleaned silicon oxide layer to the cleaned surface of the second substrate.
Abstract:
Apparatus and methods of thermally processing semiconductor substrates are disclosed. Aspects of the apparatus include a source of intense radiation and a rotating energy distributor that distributes the intense radiation to a rectifier. The rectifier directs the radiation toward the substrate. Aspects of the method include using a rotating energy distributor to distribute pulsed energy to a substrate for processing. The rotational rate of the energy distributor is set based on the pulse repetition rate of the energy source. A substrate may be continuously translated with respect to the energy distributor at a rate set based on the pulse repetition rate of the energy source.
Abstract:
A laser that emits light at all available frequencies distributed throughout the spectral bandwidth or emission bandwidth of the laser in a single pulse or pulse train is disclosed. The laser is pumped or seeded with photons having frequencies distributed throughout the superunitary gain bandwidth of the gain medium. The source of photons is a frequency modulated photon source, and the frequency modulation is controlled to occur in one or more cycles timed to occur within a time scale for pulsing the laser.
Abstract:
A method and apparatus for annealing semiconductor substrates is disclosed. The apparatus has a pulsed energy source that directs pulsed energy toward a substrate. A homogenizer increases the spatial uniformity of the pulsed energy. A pulse shaping system shapes the temporal profile of the pulsed energy. A pulse circulator may be selected using a bypass system. The pulse circulator allows a pulse of energy to circulate around a path of reflectors, and a partial reflector allows a portion of the pulse to exit the pulse circulator with each cycle. The pulse circulator may have delaying elements and amplifying elements to tailor the pulses exiting from the circulator.