Abstract:
A capacitive touch sensitive film (1) comprises a conductive layer (3) having a sensing region (13). According to the present invention, the sheet resistance of the conductive layer (3) in the sensing region (13) is higher than or equal to 3 kΩ.
Abstract:
A touch sensitive film (1) comprises a conductive layer (2) having a touch sensing region (3), and a user input surface (4). The user input surface of the touch sensitive film comprises a tactilely distinguishable surface feature (5) deviating from the general nature of the user input surface (4) for identifying the location of the touch sensing region (3) by sensing the tactilely distinguishable surface feature.
Abstract:
A method for producing catalyst particles is disclosed. The method comprises: forming a solution comprising a solvent and a material including catalyst material, wherein the material including catalyst material is dissolved or emulsified in the solvent; aerosolizing the formed solution to produce droplets comprising the material including catalyst material; and treating the droplets to produce catalyst particles or intermediate catalyst particles from the material including catalyst material comprised in the droplets. A method for producing nanomaterials, an apparatus,a catalyst particle and a solution droplet for the production of a catalyst particle are also disclosed.
Abstract:
A touch controllable light-emitting film is provided. It comprises a flexible, formable, foldable, stretchable and/or bendable light-emitting and/or light transmitting active layer. It also comprises at least two conductive or semi-conductive electrodes positioned on each side of the light-emitting active layer and/or light-blocking layer, wherein at least one electrode comprises HARMs (High Aspect Ratio Molecular structures),Monolayer Crystalline Surface (MCS) structures,transparent conductive oxides, conductive or semicondutive polymers and/or a metal mesh.
Abstract:
The present invention discloses a touch interface device for numerous applications and also a principle to store the device in a compact form. The device comprises a flexible touch sensitive film which can be enclosed into a casing when stored, and removed, either fully or partially, from the casing when in use. The film may be manufactured by using High Aspect Ratio Molecular Structures. Touch Driving, Sensing and Communication Modules, separate or combined,can be attached to the touch sensitive film in order to transmit a raw touch signal to Touch Processing and Communication Modules, either separate or combined, and then as further processed, to a desired CPU or computer. The casing may also house an internal projector for displaying information. Furthermore, haptic feedback can be generated via the touch sensitive film as well.
Abstract:
A structure comprising high aspect ratio molecular structures (HARM-structures),wherein the structure comprises an essentially planar network (2) of HARM-structures,and a support (3) in contact with the network (2). The support (3) has an opening (5) therein, at the peripheral region (4) of which opening (5) the network (2) is in contact with the support (3), such that the middle part of the network (2) is unsupported by the support (3). The network (2) comprises essentially randomly oriented HARM-structures.
Abstract:
A method for the production of a fibrous network- substrate component. The method comprises the steps of providing a network of fibrous material (1) on a preliminary substrate (2) by filtering high aspect ratio molecular structures (HARM-structures) from gas flow, placing the network of fibrous material (1) on the preliminary substrate (2) in proximity to a secondary substrate (3), applying a force to the network of fibrous material (1) to preferably attract the network of fibrous material (1) from the preliminary substrate (2) to the secondary substrate (3) in order to transfer the network of fibrous material (1) from the preliminary substrate (2) to the secondary substrate (3), and removing the preliminary substrate (2) from the network of fibrous material (1).
Abstract:
The present invention relates to a method, computer program and device for determining the crystal structure and/or the range of crystal structures of one or more crystalline tubular molecules from a set of calibration-free properties of a diffraction pattern of the one or more crystalline tubular molecules.
Abstract:
A method for producing nanomaterial comprising carbon is disclosed. The method comprises introducing a combination of two or more carbon sources (1, 2) into a synthesis reactor (101); decomposing at least partially the two or more carbon sources (1, 2) in the synthesis reactor to release carbon (104) from the two or more carbon sources (1, 2); and synthesizing the nanomaterial comprising carbon from the released carbon (104) in the synthesis reactor (101).
Abstract:
The invention relates to a method for the production of an at least partially electrically conductive or semi-conductive element on a structure, wherein the element comprises one or more layers, the method comprising the steps of a) forming a formable element comprising one or more layers, wherein at least one layer comprises a network of high aspect ratio molecular structures (HARM-structures), wherein the HARM-structures are electrically conductive or semi-conductive, and b) arranging the formable element in a conformal manner onto a structure by pressing and/or vacuum sealing the formable element on a three-dimensional surface of the structure, for producing a conformal and at least partially electrically conductive or semi-conductive element comprising one or more layers, wherein at least one layer comprises a network of HARM-structures, on the three dimensional surface of the structure. Further, the invention relates to a conformal element and uses thereof.