Abstract:
Embodiments of a semiconductor device having increased channel mobility and methods of manufacturing thereof are disclosed. In one embodiment, the semiconductor device includes a substrate including a channel region and a gate stack on the substrate over the channel region. The gate stack includes an alkaline earth metal. In one embodiment, the alkaline earth metal is Barium (Ba). In another embodiment, the alkaline earth metal is Strontium (Sr). The alkaline earth metal results in a substantial improvement of the channel mobility of the semiconductor device.
Abstract:
A semiconductor device includes a semiconductor body and an insulated gate contact on a surface of the semiconductor body over an active channel in the semiconductor device. The insulated gate contact includes a channel mobility enhancement layer on the surface of the semiconductor body, a diffusion barrier layer over the channel mobility enhancement layer, and a dielectric layer over the diffusion barrier layer. By using the channel mobility enhancement layer in the insulated gate contact, the mobility of the semiconductor device is improved. Further, by using the diffusion barrier layer, the integrity of the gate oxide is retained, resulting in a robust semiconductor device with a low on-state resistance.
Abstract:
A vertical semiconductor device includes a substrate, a buffer layer over the substrate, and a drift layer over the buffer layer. The substrate has a first doping type and a first doping concentration. The buffer layer has the first doping type and a second doping concentration that is less than the first doping concentration. The drift layer has the first doping type and a third doping concentration that is less than the second doping concentration.
Abstract:
A semiconductor device includes a semiconductor layer structure of a wide band-gap semiconductor material. The semiconductor layer structure includes a drift region having a first conductivity type and a well region having a second conductivity type. A plurality of segmented gate trenches extend in a first direction in the semiconductor layer structure. The segmented gate trenches include respective gate trench segments that are spaced apart from each other in the first direction with intervening regions of the semiconductor layer structure therebetween. Related devices and fabrication methods are also discussed.
Abstract:
The present disclosure relates to a silicon carbide (SiC) field effect device that has a gate assembly formed in a trench. The gate assembly includes a gate dielectric that is an dielectric layer, which is deposited along the inside surface of the trench and a gate dielectric formed over the gate dielectric. The trench extends into the body of the device from a top surface and has a bottom and side walls that extend from the top surface of the body to the bottom of the trench. The thickness of the dielectric layer on the bottom of the trench is approximately equal to or greater than the thickness of the dielectric layer on the side walls of the trench.
Abstract:
A power metal-oxide-semiconductor field-effect transistor (MOSFET) includes a substrate, a drift layer over the substrate, and a spreading layer over the drift layer. The spreading layer includes a pair of junction implants separated by a junction gate field effect (JFET) region. A gate oxide layer is on top of the spreading layer. The gate contact is on top of the gate oxide layer. Each one of the source contacts are on a portion of the spreading layer separate from the gate oxide layer and the gate contact. The drain contact is on the surface of the substrate opposite the drift layer.