Abstract:
A method (300 A) of fabricating an integrated circuit includes forming (305) a patterned dielectric layer, which includes a first pattern of openings, over a substrate and implanting (310) a first n-type dopant into the substrate through the patterned dielectric layer to form a first doped region. The method continues with forming (315) a patterned photoresist layer overlying the patterned dielectric layer, which includes a second pattern of openings and implanting (320) a second n-type dopant into the substrate through the patterned photoresist layer and patterned dielectric layer to form a second doped region. The patterned photoresist layer and patterned dielectric layer are removed (325). An epitaxial layer is grown (330) on the substrate, and the first doped region and second doped region are driven (330) into the epitaxial layer to form respective first and second n-type buried layers, and then active devices are formed (335) in the epitaxial layer.
Abstract:
An integrated circuit (100) containing an n-channel finFET (106) and a p-channel finFET (110) has a dielectric layer (112) over a silicon substrate (102). The fins of the finFETs (106, 110) have semiconductor materials with higher mobilities than silicon. A fin of the n-channel finFET (106) is on a first silicon-germanium buffer (118) in a first trench (114) through the dielectric layer (112) on the substrate (102). A fin of the p-channel finFET (110) is on a second silicon-germanium buffer (132) in a second trench (116) through the dielectric layer (112) on the substrate (102). The fins extend at least 10 nanometers above the dielectric layer (112). The fins are formed by epitaxial growth on the silicon-germanium buffers (118, 132) in the trenches (114, 116) in the dielectric layer (112), followed by CMP planarization down to the dielectric layer (112). The dielectric layer (112) is recessed to expose the fins. The fins may be formed concurrently or separately.
Abstract:
A power metal-oxide-semiconductor field-effect transistor (MOSFET) includes a substrate, a drift layer over the substrate, and a spreading layer over the drift layer. The spreading layer includes a pair of junction implants separated by a junction gate field effect (JFET) region. A gate oxide layer is on top of the spreading layer. The gate contact is on top of the gate oxide layer. Each one of the source contacts are on a portion of the spreading layer separate from the gate oxide layer and the gate contact. The drain contact is on the surface of the substrate opposite the drift layer.
Abstract translation:该场效应晶体管具有:在p型Si衬底上由Al x Ga 1-x N(0≤x≤1)形成的共掺杂层; 形成在所述共掺杂层上的GaN层; 以及形成在GaN层上的AlGaN层。 共掺杂层含有C和Si作为杂质元素,共掺杂层中的杂质浓度为5×10 17 / cm 3以上,共掺杂层中的Si的杂质浓度低于杂质浓度 的C层中,GaN层中的杂质浓度为1×10 17 / cm 3以下,GaN层的膜厚为0.75μm以上。
Abstract:
A solution for fabricating a semiconductor structure is provided. The semiconductor structure includes a plurality of semiconductor layers grown over a substrate using a set of epitaxial growth periods. During each epitaxial growth period, a first semiconductor layer having one of: a tensile stress or a compressive stress is grown followed by growth of a second semiconductor layer having the other of: the tensile stress or the compressive stress directly on the first semiconductor layer. One or more of a set of growth conditions, a thickness of one or both of the layers, and/or a lattice mismatch between the layers can be configured to create a target level of compressive and/or shear stress within a minimum percentage of the interface between the layers.
Abstract:
Die Erfindung betrifft ein Schichtsystem aus einem siliziumbasierten Träger mit einer einkristallinen Oberfläche und einer direkt auf der einkristallinen Oberfläche des Trägers aufgebrachten Heterostruktur. Das erfindungsgemässe Schichtsystem zeichnet sich dadurch aus, dass der Träger ein mit einem oder mehreren Dotanden dotiertes Siliziumsubstrat umfasst, wobei sich die Dotierung über mindestens 30% der Dicke des dotierten Siliziumsubstrats erstreckt und eine Konzentration der Dotanden im dotierten Bereich des Siliziumsubstrats so vorgegeben ist, dass eine bereinigte Grenzkonzentration (GK) die Bedingung der Formel (1) erfüllt: wobei i für den jeweiligen Dotanden im Siliziumsubstrat, N dot für die Dotandenkonzentration in cm -3 und E A für eine das Versetzungsgleiten hemmende Energiebarriere des Dotanden in eV steht.
Abstract:
The invention concerns a high voltage component for switching high voltage currents and a method for making such a component. Said component comprises partial components (10) series-mounted and laterally arranged on a self-supporting semiconductor wafer (14), said partial elements, for example, operating a switch from a certain voltage applied between a first bridge cathode (22) and an anode metal layer (7). At least one partial component has a region extending from the semiconductor front face to its rear face.