Abstract:
A method for preventing over-programming of resistive random access (ReRAM) based memory cells in a ReRAM memory array includes applying a programming voltage in a programming circuit path including a ReRAM memory cell to be programmed, sensing programming current drawn by the ReRAM cell while the programming voltage is applied across the memory cell, and decreasing the programming current as a function of a rise in programming current.
Abstract:
An integrated programmable logic circuit having a read/write probe includes a plurality of programmable logic circuits having internal circuit nodes and a plurality of flip flops, each having an asynchronous data input line, an asynchronous load line, and a data output connected to an internal circuit node, a probe-data line, an address circuit for selecting one of the internal circuit nodes, a read-probe enable line for selectively coupling the selected one of the internal circuit nodes to the probe-data line, a data input path to the asynchronous data input line of each flip flop, a write- probe data input path to the asynchronous data input line of each flip flop, a write- probe enable line, and selection circuitry, responsive to the address circuit and the write-probe enable line, to couple one of the data input path and the write-probe data input path to the asynchronous data input of a selected flip flop.
Abstract:
A single-event-upset (SEU) stabilized memory cell includes a latch portion including a cross-coupled latch, and at least one cross coupling circuit path in the latch portion including a first series-connected pair of vertical resistors.
Abstract:
A static random-access memory (SRAM) cell includes a non-inverting logic element having an input and an output. A vertical resistor feedback device is connected between the output and the input of the non-inverting logic element.
Abstract:
A ReRAM cell array has rows and columns and includes first and second complementary bit lines for each row, a first, second and third word lines for each column and a source bit line for each row. A ReRAM cell at each row and column includes a first resistive memory element, its first end connected to the first complementary bit line of its row, a p-channel transistor, its source connected to a second end of the first resistive memory element, its drain connected to a switch node, its gate connected to the first word line of its column, a second resistive memory element, its first end connected to the second complementary bit line of its row, an n-channel transistor, its source connected to a second end of the second resistive memory element, its drain connected to the switch node, its gate connected to the second word line of its column, and a programming transistor having a drain connected to the switch node, a source connected to the source bit line of its row and a gate connected to the third word line of its column.