Abstract:
A method for checking an out-of-step of a synchronous motor includes: detecting electric degrees of the synchronous motor, in which the electric degrees comprise at least a first electric degree and a second electric degree detected at a preset interval, and the second electric degree is detected after the first electric degree; comparing the first electric degree with the second electric degree to obtain a comparing result; and determining that the synchronous motor is out of step when the comparing result satisfies a preset requirement. It is determined that the synchronous motor is out of step when the electric degree keeps unchanged or decreases progressively, or an increment of the electric degree is very small.
Abstract:
A method for checking an out-of-step of a synchronous motor includes detecting three-phase currents of the synchronous motor; determining whether a relationship between the three-phase currents satisfies a preset requirement; and if no, determining that the synchronous motor is out of step. It is determined that the synchronous motor is out of step when amplitudes of each current of the three-phase currents are not equal or when the phase difference between the three-phase currents is not 120°.
Abstract:
A method of controlling an accelerator of a four-wheel drive electric vehicle and a device thereof are provided. The method comprises the step of controlling power output of the vehicle by a sum of output torque of a main drive motor and an auxiliary drive motor, wherein the output torque of the main drive motor is determined by a depressing degree for an accelerator pedal. The output torque T 0 of the auxiliary drive motor is determined by obtaining a torque calculating factor GainAccSum being a cumulative value of acceleration GainAcc of the accelerator pedal; determining a maximum output torque T of the auxiliary drive motor at a current speed of the vehicle; and calculating the output torque T 0 of the auxiliary drive motor varying between 0 and T based on the torque calculating factor GainAccSum and the maximum output torque T of the auxiliary drive motor at the current speed, wherein the output torque T 0 of the auxiliary drive motor is increased as the torque calculating factor GainAccSum increasing. The accelerator accelerating control method and the device provide quick response and high precision of the power output.
Abstract:
A control system for a hybrid vehicle controls the various operating modes of the hybrid vehicle. Operating modes of the hybrid vehicle include an electric-only power mode, a series hybrid mode, a series hybrid dual-power mode, and a parallel hybrid tri-power mode. The control system selects one of the operating modes for the hybrid vehicle based on one or more inputs and comparisons. Examples of inputs for the control system include a gear-mode, a present battery storage capacity, a present velocity of the hybrid vehicle, and the previous operating mode of the hybrid power system. The control system may also take into account whether a user has selected the electric-only power mode. The control system may also control the operations of one or more components of the hybrid vehicle while operating in one of the operating modes.
Abstract:
The present invention discloses an apparatus and method for controlling energy feedback for electric vehicles. The method includes: acquiring an accelerator-pedal travel value, a brake-pedal travel value and a current vehicle speed value; determining whether the brake-pedal travel value is equal to 0%, and calculating a feedback torque based on the current vehicle speed value and the brake-pedal travel value if the brake-pedal travel value is not equal to 0%; or comparing the accelerator-pedal travel value with a given feedback value if the brake-pedal travel value is equal to 0%; and calculating a feedback torque based on the current vehicle speed value if the accelerator-pedal travel value is not greater than the given feedback value; and converting mechanical energy generated by the feedback torque T into electric energy, and transmitting the electric energy to battery of the electric vehicle for storing. According to the present invention, the endurance mileage of electric vehicle may be effectively prolonged and the utilization efficiency of battery is improved.
Abstract:
The present invention provides a hybrid power driving system, comprising : a first subsystem (401) designed to input/output power; a second subsystem (402) designed to input/output power; a driving shaft (500) designed to receive power from the first subsystem (401) and/or the second subsystem (402) or output power to the first subsystem (401) and/or the second subsystem (402); and a tri-stated overrunning clutch (400) designed to connect the first subsystem (401) and the second subsystem (402), wherein the tri-stated overrunning clutch (400) may be in an overrun state, an engaged state, or a disengaged state. The first subsystem (401) and the second subsystem (402) can comprise an engine, a motor, and a clutch, etc., respectively. In such a hybrid power driving system, when the tri-stated overrunning clutch is in the engaged state, the first subsystem (401) and the second subsystem (402) are coupled to each other and work together. When the tri-stated overrunning clutch (400) is in the disengaged state, the first subsystem (401) and the second subsystem (402) can work separately without any interference to each other. Therefore, the structure is simple and the control is convenient.
Abstract:
A method and apparatus for controlling a motor of an electric vehicle. A current acceleration a of the motor is calculated in real time according to detected rotor position values. If the current acceleration a is greater than a predetermined forward acceleration a 0, then the motor output torque is decreased. If the acceleration a is less than a predetermined backward acceleration a 1, then the motor output torque is increased. Thus, when the vehicle travels from a normal road surface to a slippy road surface or on the contrary, decreasing or increasing the motor output torque may suppress an abrupt variation of vehicle speed. According to a preferred embodiment, reducing output torque during early period may suppress current abrupt variation, protect the power device, and avoid the vehicle being out-of-control caused by a rotor blocking or a motor skidding.
Abstract:
A clutchless transmission apparatus and control method thereof. The transmission apparatus comprises a motor(10) and a transmission(20), said motor(10) is connected to said transmission(20) and supplies power to said transmission(20) via an input shaft of the transmission(20), wherein said apparatus further comprises a control device(30), which is electrically connected to said motor(10) and said transmission(20), wherein said control device(30) is configured to determine whether a gear-position shifting is required based on rotation speed of said transmission(20), if a gear-position shifting is required, regulates torque of said motor(10) to control said transmission(20) to disengage, and then regulates the rotation speed of said motor(10) based on the rotation speed of said transmission(20) to control said transmission(20) to engage for shifting gear-position. The clutchless transmission apparatus provided in the present invention doesn't need a clutch during gear-position shifting, and therefore it is light, simple, easy to maintain and control, and can be used in a wide range of application.
Abstract:
The present invention discloses a hybrid power output system for outputting the power to the wheel driving shaft, comprising an engine, a first motor, a second motor, a battery, a first clutch, a second clutch and a constant-mesh fixed ratio reduction unit, wherein the first motor and the second motor are connected electrically with the battery; the engine is connected to the first motor via the first clutch; the first motor is connected to the second motor via the second clutch; the second motor is connected to the wheel driving shaft via the constant-mesh fixed ratio reduction unit. This hybrid power output system can enhance the comfort of the vehicle, save the space and reduce the cost, moreover, it can realize multiple drive modes to improve the power efficiency and reduce the fuel consumption.
Abstract:
A hybrid power output system for outputting the power to the wheel driving shaft, comprising an engine (1), a first motor (2), a second motor (3), a third motor (12), a battery (6), a first clutch (4), a second clutch (5), and a third clutch (11), wherein the first motor (2) and the second motor (3) are connected electrically with the battery(6), and the third motor (12) is connected electrically with the battery or another battery; the engine(1) is connected to the first motor (2) via the first clutch (4), and connected to the third motor (12) via the third clutch (11); the first motor (2) is connected to the second motor (3) via the second clutch (5), and the second motor is connected to a wheel driving shaft (8). The hybrid power output system can reduce the response time of the vehicle, perfect its power performance, save the space and reduce the cost as well.