Abstract:
Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal- based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.
Abstract:
A hydrocarbon product stream having hydrocarbons with boiling points in the aviation fuel range is produced from renewable feedstocks such as plant and animal oils. The process involves treating a renewable feedstock by hydrogenating, deoxygenating, isomerization, and selectively hydrocracking the feedstock to produce paraffinic hydrocarbons having from 9 to 16 carbon atoms and a high iso/normal ratio in a single reaction zone containing a multifunctional catalyst, or set of catalysts, having hydrogenation, deoxygenation, isomerization and selective hydrocracking functions.
Abstract:
A process for the production of methanol from methane has been developed. The process involves reacting methane with an oxidant such as oxygen or a peroxide in the presence of a catalyst and a solvent in a reaction zone to produce an effluent stream comprising a methanol product. The effluent stream is next separated into a gaseous stream comprising unreacted methane and carbon dioxide and a liquid stream comprising the methanol product and solvent. Next the gaseous stream is further separated to provide a methane stream which is recycled to the reaction zone. Finally, a methanol stream is isolated and a solvent stream is recycled to the reaction zone.
Abstract:
Processes for producing reduced acid lignocellulosic-derived pyrolysis oil are provided. In a process, lignocellulosic material is fed to a heating zone. A basic solid catalyst is delivered to the heating zone. The lignocellulosic material is pyrolyzed in the presence of the basic solid catalyst in the heating zone to create pyrolysis gases. The oxygen in the pyrolysis gases is catalytically converted to separable species in the heating zone. The pyrolysis gases are removed from the heating zone and are liquefied to form the reduced acid lignocellulosic-derived pyrolysis oil.
Abstract:
A process for controlling the concurrent production of both diesel range hydrocarbons and aviation range hydrocarbons from renewable feedstocks such as plant oils and animal oils. The process involves determining the required specification of the desired products and the desired relative yields of the product that still meet the required specifications. The necessary isomerization and selective hydrocracking zone conditions are determined in order to create a mixture of paraffins which meet the required product specifications and yields. The necessary fractionation zone conditions are determined to separate the desired products. A renewable feedstock (2) is treated by hydrogenating and deoxygenating (4) to provide an effluent (6) comprising paraffins, isomerizing and selectively hydrogenating (22) at least a portion of the paraffins at the predetermined conditions, and separating by fractionation (42) at the predetermined fractionation conditions to generate a diesel range hydrocarbon product (46) and an aviation range hydrocarbon product (45).
Abstract:
A process for converting methane to methanol using a homogeneous catalyst has been developed. The catalyst is a metal compound having an empirical formula of M x X m where M is a metal such as Pd, Cu, Co, and Mn, X is an anion such as acetate, trifluoroacetate, sulfate, propionate, "m" is the oxidation state of M, and "x" is the anion valence of X. Generally the process involves contacting a gas stream containing methane with the homogeneous catalyst and an oxidant such as hydrogen peroxide at oxidation conditions to produce methyl trifluoroacetate. Finally, the methyl trifluoroacetate is hydrolyzed to give a methanol product stream.
Abstract translation:已经开发了使用均相催化剂将甲烷转化为甲醇的方法。 催化剂是具有经验式M x SUB x m M的金属化合物,其中M是金属如Pd,Cu,Co和Mn,X是阴离子等 作为乙酸盐,三氟乙酸盐,硫酸盐,丙酸盐,“m”是M的氧化态,“x”是X的阴离子化合价。通常该方法包括使含有甲烷的气流与均相催化剂和氧化剂如氢气 过氧化物在氧化条件下反应生成三氟乙酸甲酯。 最后,将三氟乙酸甲酯水解,得到甲醇产物流。
Abstract:
Embodiments of methods and catalysts for deoxygenating a biomass-derived pyrolysis oil are provided. The method comprises the step of contacting the biomass-derived pyrolysis oil with a first deoxygenating catalyst in the presence of hydrogen at first predetermined hydroprocessing conditions to form a first low-oxygen biomass-derived pyrolysis oil effluent. The first deoxygenating catalyst comprises a neutral catalyst support, nickel, cobalt, and molybdenum. The first deoxygenating catalyst comprises nickel in an amount calculated as an oxide of from 0.1 to 1.5 wt. %.
Abstract:
Processes for producing a low acid biomass-derived pyrolysis oil are provided that include pre-treating a biomass-derived pyrolysis oil to form a treated acid-containing biomass-derived pyrolysis oil. The processes also include esterifying the treated acid-containing biomass-derived pyrolysis oil in the presence of supercritical alcohol and a catalyst composition to form the low-acid biomass-derived pyrolysis oil, the catalyst composition comprising a material selected from the group consisting of an unsupported solid acid catalyst, an unsupported solid base catalyst, and a catalytic metal dispersed on a metal oxide support.
Abstract:
Low water-containing biomass-derived pyrolysis oils and processes for preparing them are provided. Water-containing biomass-derived pyrolysis oil is distilled in the presence of an azeotrope-forming liquid to form an azeotrope. The azeotrope is removed at or above the boiling point of the azeotrope and low water biomass-derived pyrolysis oil is obtained.
Abstract:
A method of determining a surface property of a plurality of solids by contacting the solids with a fluid, measuring the radiation emitted, absorbed, or altered during desorption of the fluid using a detector, and then determining at least one surface property of the solids from the radiation measurements has been invented. The invention is particularly useful in combinatorial applications in order to evaluate a plurality of solids or mixtures of solids to determine at least one surface property of each of the solids.