Abstract:
A shell-and-tube equipment (10) has a cylindrical geometry and is arranged along a vertical axis (A). The shell-and-tube equipment (10) comprises an upper chamber (12) and a lower chamber (14) connected to a common tube bundle (16) on opposite sides. The upper chamber (12) is provided with at least an inlet nozzle (18) for inletting a first fluid. The tube bundle (16) is surrounded by a shell (20) provided with nozzles (22; 24) for inletting and outletting a second fluid which exchanges heat with the first fluid through the tube bundle (16). The upper chamber (12) encloses at least a distribution device (26) configured for uniformly delivering the first fluid towards the tube bundle (16). The distribution device (26) comprises an annular channel (28) which is arranged around the vertical axis (A) and is in fluid communication with the inlet nozzle (18). The distribution device (26) comprises a plurality of channel modules (30) of circular trapezoid shape, tightly joined together at their respective vertical edges (72, 74) for forming the annular channel (28).
Abstract:
Die Erfindung betrifft eine Vorrichtung zur Herstellung von pulverförmigem Poly(meth)acrylat, umfassend einen Reaktor (1) zur Tropfenpolymerisation mit einer Vorrichtung (5) zur Vertropfung einer Monomerlösung für die Herstellung des Poly(meth)acrylats mit Löchern, durch die die Monomerlösung eingebracht wird, einer Zugabestelle (13) für ein Gas oberhalb der Vorrichtung (5) zur Vertropfung, mindestens einer Gasentnahmestelle (19) am Umfang des Reaktors (1) und einer Wirbelschicht (11), wobei der Reaktor (1) oberhalb der Gasentnahmestelle (19) einen Bereich mit konstantem hydraulischem Innendurchmesser aufweist und unterhalb der Gasentnahmestelle (19) einen hydraulischen Innendurchmesser aufweist, der stetig kleiner wird. Im Bereich mit stetig kleiner werdendem hydraulischem Innendurchmesser weist der Reaktor (1) eine Beheizung (31) auf.
Abstract:
Integrated liquid fuel catalytic partial oxidation (CPOX) reformer (401) and fuel cell systems (467) can include a plurality or an array of spaced-apart CPOX reactor units (408), each reactor unit (408) including an elongate tube having a gas-permeable wall with internal and external surfaces, the wall enclosing an open gaseous flow passageway with at least a portion of the wall having CPOX catalyst disposed therein and/or comprising its structure. The catalyst-containing wall structure and open gaseous flow passageway enclosed thereby define a gaseous phase CPOX reaction zone (409), the catalyst-containing wall section being gas-permeable to allow gaseous CPOX reaction mixture to diffuse therein and hydrogen rich product reformate to diffuse therefrom. The liquid fuel CPOX reformer also can include a vaporizer (415), one or more igniters (435), and a source of liquid reformable fuel. The hydrogen-rich reformate can be converted to electricity within a fuel cell unit integrated with the liquid fuel CPOX reactor unit.
Abstract:
A dual utilization liquid and gaseous fuel CPOX reformer that includes reaction zones for the CPOX reforming of liquid and gaseous reformable fuels. A reforming method is also provided. The method comprises reforming a first gaseous reformable reaction mixture comprising oxygen-containing gas and vaporized liquid fuel and before or after this step, reforming second gaseous reformable reaction mixture comprising oxygen~containing gas and gaseous fuel to produce a hydrogen-rich reformate.
Abstract:
Integrated gaseous fuel catalytic partial oxidation (CPOX) reformer and fuel cell systems can include a plurality or an array of spaced-apart CPOX reactor units, each reactor unit including an elongate tube having a gas-permeable wall with internal and external surfaces, the wall enclosing an open gaseous flow passageway with at least a portion of the wall having CPOX catalyst disposed therein and/or comprising its structure. The catalyst-containing wall structure and open gaseous flow passageway enclosed thereby define a gaseous phase CPOX reaction zone, the catalyst-containing wall section being gas-permeable to allow gaseous CPOX reaction mixture to diffuse therein and hydrogen rich product reformate to diffuse therefrom. The gaseous fuel CPOX reformer also can include one or more igniters, and a source of gaseous reformable fuel. The hydrogen-rich reformate can be converted to electricity within a fuel cell unit integrated with the gaseous fuel CPOX reformer.
Abstract:
A multi-tubular chemical reactor includes an igniter for the initiation of gas phase exothermic reaction within the gas phase reaction zones of the tubular reactor units.
Abstract:
Vorgeschlagen wird ein Verfahren zur Bereitstellung eines Sauerstoff enthaltenden Gasstromes für die endotherme Umsetzung eines Ausgangsstromes, enthaltend einen oder mehrere Kohlenwasserstoffe, mit einer vorgegebenen Konzentration an Sauerstoff und einer vorgegebenen Temperatur, das dadurch gekennzeichnet ist, dass ein fluider Brennstoffstrom mit einem Primärluftstrom bei λ-Werten des Primärluftstromes zum fluiden Brennstoff- ström von 0,6 bis 1,2 unter Erhalt eines Verbrennungsgasstromes verbrannt wird, und zum Verbrennungsgasstrom ein Sekundärluftstrom zugemischt wird, unter Erhalt des Sauerstoff enthaltenden Gasstromes für die endotherme Umsetzung, wobei über den Mengenstrom und die Temperatur des Sekundärluftstromes die vorgegebene Konzentration an Sauerstoff sowie die vorgegebene Temperatur des Sauerstoff enthaltenden Gasstromes eingestellt werden.
Abstract:
A fixed bed reactor for cyclic, catalytic dehydrogenation of hydrocarbons, such as alkanes and a reactor-internal device for improving distribution of hydrocarbon feed into the fixed catalyst bed of the reactor. The device comprises a vertical deflector plate with multiple horizontal slits and a frustum cone with multiple perforations on the lateral surface, connected to the bottom end of the plate. The reactor includes a main horizontal reaction vessel containing a fixed catalyst bed and a cactus-shaped inlet assembly sub-divided into three inlets at the upper half portion to supply fluid streams, including hydrocarbon feed, to the catalyst bed. The distributor device is positioned inside a main central vertical arm of the inlet assembly form by the convergence of the three inlets. Various embodiments of the distributor device where the slit thicknesses, distance between slits, perforation diameter, distance between perforations are varied, are also provided.
Abstract:
Integrated gaseous fuel catalytic partial oxidation (CPOX) reformer (401) and fuel cell (467) systems can include a plurality or an array of spaced-apart CPOX reactor units (408), each reactor unit including an elongate tube having a gas-permeable wall with internal and external surfaces, the wall enclosing an open gaseous flow passageway with at least a portion of the wall having CPOX catalyst disposed therein and/or comprising its structure. The catalyst-containing wall structure and open gaseous flow passageway enclosed thereby define a gaseous phase CPOX reaction zone (409), the catalyst-containing wall section being gas-permeable to allow gaseous CPOX reaction mixture to diffuse therein and hydrogen rich product reformate to diffuse therefrom. The gaseous fuel CPOX reformer also can include one or more igniters (435), and a source of gaseous reformable fuel. The hydrogen-rich reformate can be converted to electricity within a fuel cell unit integrated with the gaseous fuel CPOX reformer.
Abstract:
A multi-tubular chemical reactor (400) includes an igniter (435) for the initiation of gas phase exothermic reaction within the gas phase reaction zones (409) of the tubular reactor units (408). A method of carrying out a gas phase exothermic reaction within the multi-tubular chemical reactor comprising: introducing gaseous reactants into a tubular reactor unit (408); initiating with radiant heat an exothermic reaction of the gaseous reactants within the reactor unit; and transferring heat produced by the exothermic reaction occurring within the gas phase reaction zone of the reactor unit to the gas phase reaction zone of one or more adjacent reactor units (408), thereby initiating an exothermic reaction within at least one adjacent reactor unit (408) until in such manner an exothermic reaction has been initiated in each of the plurality of spaced-apart reactor units (408).