Abstract:
A system for deploying an airbag when an unmanned aerial vehicle (UAV) has failed or is no longer able to sustain flight, comprising a triggering means which releases compressed air into a bag or bags which are configured to expand around the UAV for the purpose of reducing the deceleration forces of the UAV on impact. UAV's are provided that are configured with a system that includes a triggering mechanism that deploys one or more bags when there is a failure or when flight is no longer sustainable.
Abstract:
Systems and methods for obstruction detection during autonomous unmanned aerial vehicle landings, including unmanned aerial vehicles equipped with at least one video camera, an image processor that analyzes a teed from the video camera to detect possible obstructions, and an autopilot programmed to abort an autonomous landing; if it receives a signal indicating an obstruction was detected. In some examples, the systems and methods are in communication with a ground station to perform obstruction detection analysis instead of performing such processing on board the UAV. In some further examples, the landing area includes a ground-based visual target that the UAV can locate and home in upon from the air.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for sending a flight plan for execution by a drone, where the flight plan is adapted to a flight controller of the drone. Receiving flight data from the drone while the drone is executing the flight plan. Determining a modification to the flight plan based on the flight data received from the drone. Sending the modification to the flight plan to the drone while the drone is executing the flight plan, such that the drone executes the flight plan as modified by the modification.
Abstract:
An unmanned flying device including a body; a first blade and at least a second blade; a coupling assembly for coupling the first blade and the at least second blade to the body, wherein the coupling assembly urges the collapsing of the first blade and the at least second blade towards the body; and wherein both the first blade and the at least second blade are rotateable about the body, and wherein the first blade and the at least second blade are deployable away from the body via rotation of the first and the at least second blades about the body.
Abstract:
There is provided a method of using a device capable of controlled flight in a surrounding environment, the device comprising: lifting means for providing lift to the device; object-retaining means for holding an object to be affixed to a target site; and a dispensing assembly for dispensing an adhesive, wherein the method comprises: controlling the lifting means so as to controllably fly the device in the surrounding environment; and using the device to affix an object held by the object-retaining means to a target site in the surrounding environment by dispensing an adhesive from the dispensing assembly. Thus, an aerial device, for example a robotic device, may be used to fly to a desired location and affix an object at the desired location, by dispensing, ejecting or otherwise applying an adhesive.
Abstract:
Disclosed are transportable unmanned aerial vehicle (UAV) facilities. The facilities comprise a housing for holding a UAV, where the housing defines a landing area for the UAV. The facilities also comprise a structure for reducing wind speed across the landing area.