Abstract:
The present invention provides the compound [6]-cycloparaphenylene, cycloparaphenylene intermediates (e.g. [n]macrocycles), and methods for making [n]cycloparaphenylenes and [n]cycloparaphenylene intermediates in quantities not previously available. The cycloparaphenylene compounds and their intermediates can be useful in nanotube preparation and in the preparation of other supramolecular structures.
Abstract:
A method of fabricating optical energy collection and conversion devices using carbon nanotubes (CNTs), and a method of anchoring CNT' s into thin polymeric layers is disclosed. The basic method comprises an initial act of surrounding a plurality of substantially aligned nanostructures within at least one fluid layer of substantially uniform thickness such that a first end of the plurality of nanostructures protrudes from the fluid layer. Next, the fluid layer is altered to form an anchoring layer, thereby fastening the nanostructures within the primary anchoring layer with the first ends of the nanostructures protruding from a first surface of the primary anchoring layer. Finally, a portion of the anchoring layer is selectively removed such that a second end of the nanostructures is exposed and protrudes from the anchoring layer. The resulting product is an optically absorbent composite material having aligned nanostructures protruding from both sides of an anchoring layer.
Abstract:
The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
Abstract:
The present invention provides efficient methods for producing a superhydrophobic carbon nanotube (CNT) array. The methods comprise providing a vertically aligned CNT array and performing vacuum pyrolysis on the CNT array to produce a superhydrophobic CNT array. These methods have several advantages over the prior art, such as operational simplicity and efficiency. The invention also relates to superhydrophobic CNT arrays.
Abstract:
The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
Abstract:
The invention relates to electrodes for electrochemical analysis comprising: - an insulating surface; - carbon nanotubes situated on the insulating surface at a density of at least 0.1 μm CNT Um -2 ; and - an electrically conducting material in electrical contact with the carbon nanotubes; wherein the carbon nanotubes cover an area of no more than about 5.0 % of the insulating surface. Methods of making such electrodes and assay devices or kits with such electrodes, are also provided.
Abstract:
The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
Abstract:
Provided herein are carbon nanotubes disposed on a metal substrate containing one or more cavities, methods of making thereof and uses thereof. In some embodiments, an apparatus is provided which includes carbon nanotubes carbon nanotubes disposed on a metal substrate containing one or more cavities.
Abstract:
The invention provides nanostructure composite porous silicon and carbon materials, and also provides carbon nanofiber arrays having a photonic response in the form of films or particles. Composite materials or carbon nanofiber arrays of the invention are produced by a templating method of the invention, and the resultant nanomaterials have a predetermined photonic response determined by the pattern in the porous silicon template, which is determined by etching conditions for forming the porous silicon. Example nanostructures include rugate filters, single layer structures and double layer structures. In a preferred method of the invention, a carbon precursor is introduced into the pores of a porous silicon film. Carbon is then formed from the carbon precursor. In a preferred method of the invention, liquid carbon-containing polymer precursor is introduced into the pores of an porous silicon film. The precursor is thermally polymerized to form a carbon-containing polymer in the pores of the porous silicon film, which is then thermally carbonized to produce the nanostructured composite material. A carbon nanofiber array is obtained by dissolving the porous silicon. A carbon nanofiber array can be maintained as a film in liquid, and particles can be formed by drying the material.