摘要:
Organosilane functionalised carbon nanoparticles comprising a carbon dot bonded to an organosilane functionalization agent in a first orientation having one or more functional groups capable of binding mercury located at or proximal to a free end thereof.
摘要:
Appareil (1) de détection de neutrons du type compteur proportionnel à gaz, comportant : une enceinte (2) formant cathode remplie d'un gaz et comportant un corps creux (21) présentant deux surfaces internes (23) recouvertes chacune d'une couche solide de bore (24); et - au moins une paroi intercalaire (4) formant cathode, fixée sur l'enceinte et s'étendant à l'intérieur de ladite enceinte de façon sensiblement parallèle aux surfaces internes, la ou chaque paroi intercalaire présentant deux surfaces (40) opposées recouvertes chacune d'une couche solide de bore (44); - un dispositif formant anode (3) s'étendant en partie à l'intérieur de ladite enceinte et présentant au moins une partie s'étendant entre la paroi intercalaire et l'une des surfaces internes du corps creux (21) et au moins une autre partie s'étendant entre la paroi intercalaire (4) et l'autre surface interne du corps creux, - ladite couche solide de bore peut être constituée de nanoparticules de bore.
摘要:
The electronic structure of nanowires, nanotubes and thin films deposited on a substrate is varied by doping with electrons or holes. The electronic structure can then be tuned by varying the support material or by applying a gate voltage. The electronic structure can be controlled to absorb a gas, store a gas, or release a gas, such as hydrogen, oxygen, ammonia, carbon dioxide, and the like.
摘要:
본 발명은 생체분자 센서(biomolecular sensor) 및 그 제조 방법에 관한 발명으로서 보다 구체적으로는 생체분자의 부착에 따라 복수의 나노구조물들의 전기적 특성을 변화시키는 복수의 금속 판들(plates)을 이용한 높은 검출 민감도 및 검출 분해능을 갖는 생체분자 센서 및 그 제조 방법에 관한 발명이다. 본 발명의 일측면은 기판; 상기 기판 위에 서로 이격되어 배치된 제1 전극 및 제2 전극; 상기 기판 위에 배치되며, 상기 제1 전극 및 상기 제2 전극을 연결하는 복수의 나노구조물들; 및 생체분자의 부착에 따라 상기 복수의 나노구조물들의 전기적 특성을 변화시키는 복수의 금속 판들(plates)을 포함하는 생체분자 센서를 제공하는 것이다.
摘要:
The present invention generally provides devices, systems, and methods for determination of one or more analytes. The analyte may be determined by monitoring, for example, a change in an electrical, optical, or other signal of a material (e.g., sensor material) present within the device, upon exposure to the analyte. The signal may be an electrical and/or optical property of the device. In some cases, devices described herein may be useful as sensors for the determination of analytes such as explosives, chemical warfare agents, and/or toxins.
摘要:
A solid-state field-effect transistor sensor for detecting chemical and biological species and for detecting changes in radiation is disclosed. The device includes a porous or structured channel section to improve device sensitivity. The device is operated in a fully depleted mode such that a sensed biological, chemical or radiation change causes an exponential change in channel conductance.
摘要:
A platinum/rhodium resistance thermal probe is used as an active device which acts both as a highly localized heat source and as a detector to perform localized differential calorimetry, by thermally inducing and detecting events such as glass transitions, meltings, recystallizations and thermal decomposition within volumes of material estimated at a few mu m . Furthermore, the probe is used to image variations in thermal conductivity and diffusivity, to perform depth profiling and sub-surface imaging. The maximum depth of the sample that is imaged is controlled by generating and detecting evanescent temperature waves in the sample.
摘要:
Organosilane functionalised carbon nanoparticles comprising a carbon dot bonded to an organosilane functionalization agent in a first orientation having one or more functional groups capable of binding mercury located at or proximal to a free end thereof.
摘要:
A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.
摘要:
A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.