摘要:
The present invention relates to a method for preparing a metallized open-cell foam or fibrous substrate, wherein the method comprises: (A) providing an open-cell foam or fibrous substrate, wherein the open-cell foam or fibrous substrate contains a polymer comprising heteroatom-containing moieties within the bulk of the open-cell foam or fibrous substrate or as a coating on the open-cell foam or fibrous substrate, wherein the polymer comprising heteroatom-containing moieties is selected from polyvinylpyridine, polyvinylpyrrolidone, polyvinyl alcohol, polyallylamine, polyethylene oxide, polyethylene imine, polyethylene sulfide and copolymers or blends thereof; (B) contacting the open-cell foam or fibrous substrate with nanoparticles of a first metal to provide a nanoparticle coated open-cell foam or fibrous substrate; and (C) contacting the nanoparticle coated open-cell foam or fibrous substrate with a solution comprising a salt of a second metal and a reducing agent to provide the metallized open-cell foam or fibrous substrate having a layer of the second metal on the nanoparticle coated open-cell foam or fibrous substrate.
摘要:
There are described vinyl sequential copolymers (and processes for making them) comprising (a) at least 8. 5 wt-% preferably >=20 wt-% of a higher itaconate diester (preferably dibutyl itaconate -DBI); (b) less than 23 wt-% acid monomer but also sufficient to have an acid value less than 150 mg KOH/g of polymer, (c) optionally with less than 50 wt-% of other itaconate monomers, and (d) optionally less than 77 wt-%of other monomers not (a) to (c). The DBI may be biorenewable. One embodiment is an aqueous dispersion of the vinyl sequential polymer of two phases: A) 40 to 90 wt-% of a vinyl polymer A with Tg from -50 to 30°C; and B) 10 to 60 wt-% of a vinyl polymer B with Tg from 50 to 130°C; where DBI is used to prepare A and/or B and polymer A has from 0.1 to 10 wt-% of at least one acid-functional olefinically unsaturated monomer.
摘要:
There are described a dispersion of polymeric beads where the beads comprise a copolymer composition comprising (preferably consisting essentially of):copolymers (and processes for making them) comprising (a) at least 8. 5 wt-% preferably >=20 wt-% of a higher itaconate diester (preferably dibutyl itaconate -DBI); (b) less than 23 wt-% acid monomer but also sufficient to have an acid value less than 150 mg KOH/g of polymer, (c) optionally with less than 50 wt-% of other itaconate monomers, and (d) optionally less than 77 wt-%of other monomers not (a) to (c). The DBI may be biorenewable. A further embodiment is an aqueous suspension polymerisation process for preparing vinyl polymer beads from olefinically unsaturated monomers and a free-radical initiator, where at least 10 wt-% of the monomer is DBI.
摘要:
La présente invention concerne un procédé de préparation d'un polymère comprenant une étape (E1) de polymérisation en phase dispersée en présence d'un stabilisant réactif, dans laquelle on met en présence au sein d'une phase aqueuse : - au moins un monomère éthyléniquement insaturé; - au moins une source de radicaux libres; et - un stabilisant réactif comprenant une chaîne polymère incluant des unités monomères (N-vinyl lactame) et un groupe thiocarbonylthio-S(C=S)-.
摘要:
A method of forming a nanoporous membrane includes preparing a solution of a gemini Imidazolium Lyotropic Liquid Crystal (LLC) monomer, a polar low-volatility organic solvent, and a radical photo-initiator in a volatile organic solvent; solvent-casting the solution onto a porous material, evaporating the volatile organic solvent; heating such that the gemini imidazolium monomer forms a Q-phase material and photopolymerizing the imidazolium monomer by exposing the radical photo-initiator to UV light; and exchanging the polar low-volatility organic solvent. Also disclosed is a membrane composed of polymerized gemini imidazolium LLC monomers, and a thin- film composite membrane having the Q-phase material supported on a porous supporting membrane.
摘要:
We disclose methods and compositions for preparation of stimuli-responsive plastics that are capable of responding to chemical and/or physical signals in their environment. In one embodiment the plastics consist of patterned mixtures of poly(phthalaldehyde) polymers in which each polymer contains a different end-capping group (also called a "trigger"), responsive to a different signal. Other embodiments use different polymers and different triggers. The plastics may be homogeneous in composition, but each polymer within the plastic is capable of responding to a different signal and depolymerizing once this signal reacts with the trigger. This process of depolymerization enables the plastic to alter its physical features non-linearly to external signals: i.e., the degree of change in physical form is much larger than the intensity of the initial signal.
摘要:
New carbon nanotube polymers and compositions are provided. The polymers comprise recurring blocks or units of carbon nanotubes and a compound other than a carbon nanotube. The compound is a polymeric or oligomeric block and is bonded to the carbon nanotube outer sidewall rather than to the carbon nanotube end, and is preferably a block copolymer of the compound and the carbon nanotube. The polymers can be used to prepare compositions that can be formed into products that are useful for building components present in airplanes.
摘要:
In one aspect, described herein are ultrathin films comprising an azlactone functionalized polymer and a primary amine functionalized polymer. Also described herein are ultrathin films including reactive, nonreactive, partially reactive/nonreactive, hydrophobic, hydrophilic, and mixed hydrophobic/hydrophilic ultrathin films. In another aspect, described herein are methods for making surface attached and freestanding ultrathin films.
摘要:
The present disclosure relates to Shape Memory Polymers (SMP's) comprising function groups that allow the polymers to be elastically deformed, utilized in the elastically deformed state, and subsequently returned to the original polymorphic shape.
摘要:
The present disclosure relates to Shape Memory Polymers (SMP's) comprising function groups that allow the polymers to be elastically deformed, utilized in the elastically deformed state, and subsequently returned to the original polymorphic shape.