Abstract:
Газотурбинная система с пульсирующим газовым потоком от двигателя внутреннего сгорания, состоящая из газовой турбины (1), вход которой соединен с выхлопной трубой (2) двигателя внутреннего сгорания (3), выход газовой турбины (1) соединен с трубой или системой (4) для отвода выхлопных газов, а вал газовой турбины (1) соединен, по меньшей мере, с одним потребителем механической энергии (5), отличающаяся тем, что между выхлопной трубой (2) двигателя внутреннего сгорания (3) и входом газовой турбины (1) установлен эжектор (6) таким образом, что вход эжектора (6) для приводящего в движение газового потока соединен с выхлопной трубой (2) двигателя внутреннего сгорания (3), вход эжектора (6) для приводимого в движение газового потока соединен трубой (7) с выходом газовой турбины (1), а выход из эжектора (6) для общего газового потока соединен с входом газовой турбины (1). Система, являющаяся предметом изобретения, обеспечивает уменьшение амплитуд давления и скорости газового потока в газовой турбине, а также увеличение его общей массы, чем решается задача повышения средневзвешенного КПД газовой турбины газотурбинной системы с пульсирующим газовым потоком от двигателя внутреннего сгорания и таким образом КПД системы в целом.
Abstract:
A magnetic flux coupler comprising a magnetically permeable core having a first axis, two coils magnetically associated with the core, each coil defining a pole area located on a first side of the core and the pole areas being separated along the first axis, the coils each having a central region located between the pole areas, an end region opposite to the central region, and a side region between the central region and the end region, wherein an auxiliary pole area is provided beyond the end region of each coil which absorbs leakage flux which would otherwise emanate from the each coil in use in the vicinity of the end region.
Abstract:
Die Erfindung betrifft eine Brennkraftmaschine (10) aufweisend einen Brennkraftmotor (1) mit einer Abgasseite (AGS) und einer Ladefluidseite (LLS) und ein Aufladesystem (14) umfassend einen Abgasturbolader (40) zur Aufladung des Brennkraftmotors (1 ), mit einer Verdichteranordnung (41) auf der Ladefluidseite (LLS) und einer Turbinenanordnung (42) auf der Abgasseite (AGS) einen Kompressor (3), dessen Primärseite (I) auf der Ladefluidseite (LLS) und dessen Sekundärseite (II) auf der Abgasseite (AGS) angeschlossen ist, wobei eine als Motor/Generator ausgelegte Elektromaschine (4), die an den Brennkraftmotor (1) gekoppelt ist, wobei die Elektromaschine (4) als Generator von dem Brennkraftmotor (1) antreibbar ist oder als Motor den Brennkraftmotor (1) antreiben kann und wobei der Kompressor (3) über eine mechanische Antriebskopplung (13) direkt von der Elektromaschine (4) antreibbar ist.
Abstract:
A heating apparatus for engine exhaust includes a housing having an inlet for connection in an exhaust gas conduit to receive exhaust gas and an outlet for connection in an exhaust gas conduit to discharge exhaust gas, the housing defining an interior space, a burner unit mounted in the housing for combustion of a fuel in the interior space, and, a turbocompressor, including a turbine having an inlet to receive exhaust gas to drive the turbine and an outlet connected to the housing to discharge exhaust gas and a compressor driven by the turbine and having an inlet to receive ambient air and an outlet connect to deliver compressed air to the burner. The turbocompressor may be mounted on the housing upstream of the burner unit.
Abstract:
Coupled thermal chemical reactors and engines, and associated systems and methods. A system in accordance with a particular embodiment includes a reactor vessel having a reaction zone, a hydrogen donor source coupled in fluid communication with the reaction zone, and an engine having a combustion region. The system can further include a transfer passage coupled between the combustion region and the reaction zone to transfer a reactant and/or radiate energy to the reaction zone. The system can further include a product passage coupled between the reaction zone and the combustion region of the engine to deliver to the combustion region at least a portion of a constituent removed from the reaction zone.
Abstract:
A magnetic flux coupler comprising a magnetically permeable core having a first axis, two coils magnetically associated with the core, each coil defining a pole area located on a first side of the core and the pole areas being separated along the first axis, the coils each having a central region located between the pole areas, an end region opposite to the central region, and a side region between the central region and the end region, wherein an auxiliary pole area is provided beyond the end region of each coil which absorbs leakage flux which would otherwise emanate from the each coil in use in the vicinity of the end region.
Abstract:
An exemplary turbocharger system for an internal combustion engine is provided. The turbocharger system includes a first turbine and a second turbine. The first turbine is in fluid communication with the internal combustion engine. The first turbine receives a first portion exhaust gas discharged from the internal combustion engine and provides a first turbine exhaust gas. The second turbine is in fluid communication with the first turbine via an inter-stage channel. The inter-stage channel transports the first turbine exhaust gas from the first turbine to the second turbine. The inter- stage channel is in thermal connection with an exhaust gas recirculation channel defined between an inlet and an outlet of the internal combustion engine. The first turbine exhaust gas flowing through the inter-stage channel is capable of being heated by a second portion exhaust gas discharged from the internal combustion engine and flowing through the exhaust gas recirculation channel.
Abstract:
A solenoid activated rod is moved forwards and backwards into an exhaust manifold based on signals from a pressure sensor, in order to maintain the correct volume/pressure of exhaust gases to keep a turbocharger at peak operating conditions and thereby counter the effects of turbo-lag.
Abstract:
Die vorliegende Erfindung betrifft einen Kolbenmotor (1), insbesondere für ein Kraftfahrzeug, mit wenigstens einem Zylinder (3), der wenigstens zwei Auslassventile (9, 10) auf- weist. Zur gezielten Erhöhung des Abgasenthalpieangebots kann eine Doppelnockenwelle (13) zum Steuern der Auslassventile (9, 10) vorgesehen sein, die eine Innenwelle (14) mit wenigstens einem ersten Nocken (16) zum Steuern des jeweiligen ersten Auslassventils (9) und eine dazu koaxiale Außenwelle (15) mit wenigstens einem zweiten Nocken (17) zum Steuern des jeweiligen zweiten Auslassventils (10) aufweist. Dabei sind die Innenwelle (14) und die Außenwelle (15) zum Verändern des Auslasszeitfensters der Auslassventile (9, 10) relativ zueinander drehverstellbar.