Abstract:
Hydraulikanordnung (10) für einen Kraftfahrzeugantriebsstrang (40), der einen ersten hydraulischen Verbraucher (16; 52) und einen zweiten hydraulischen Verbraucher (18; 44) aufweist, wobei der erste Verbraucher (16; 52) bedarfsweise mit einem ersten Fluidvolumenstrom (Qi) zu versorgen ist und wobei der zweite Verbraucher (18; 44) bedarfsweise mit einem zweiten Fluidvolumenstrom (Q2) zu versorgen ist, wobei die Hydraulikanordnung (10) eine Fluidversorgungseinrichtung (12), die dazu ausgebildet ist, einen Gesamt-Fluidvolumenstrom (QG) bereit zu stellen, und eine Verteilungseinrichtung (14) aufweist, die an die Fluidversorgungseinrichtung (12) angeschlossen ist und die dazu ausgebildet ist, den von der Fluidversorgungseinrichtung (12) bereit gestellten Gesamt- Fluidvolumenstrom (QG) aufzuteilen, so dass der erste Verbraucher (16; 32) mit dem ersten Fluidvolumenstrom (Q1 ) versorgt wird und der zweite Verbraucher (18; 44) mit dem zweiten Fluidvolumenstrom (Q2) versorgt wird. Dabei weist die Verteilungseinrichtung (14) ein Fluidvolumenstrombegrenzungsventil (30) auf.
Abstract:
A hydraulic pump radiant noise reduction method for a forklift or other work machine is disclosed. The method includes initiating a noise control algorithm that is enabled during periods when the displacement of the hydraulic pump remains in the zero displacement position and an operator is not demanding flow from any of the hydraulic branch circuits. When the noise control algorithm is enabled, the control valve assembly associated with the hydraulic branch circuit having the lowest hydraulic fluid pressure in relation to the hydraulic fluid pressures of all other hydraulic branch circuits is opened while the remaining control valve assemblies are in held or placed in a closed position. In an alternative embodiment, a drain valve assembly is provided that is opened when the noise control algorithm is activated.
Abstract:
Die Erfindung betrifft eine Stromteilervorrichtung sowie eine Versorgungseinrichtung mit mindestens einem Druckversorgungsanschluß (P) und mindestens zwei Nutzanschlüssen (HA, VA) und einem zumindest die jeweiligen Nutzanschlüsse (HA, VA) ansteuerbaren Steuerkolben (36), der nach einem vorgebbaren Verhältnis den über den Druckversorgungsanschluß (P) zuführbaren Volumenstrom zwischen den Nutzanschlüssen (HA, VA) in der Art einer Druckwaage regelnd aufteilt. Dadurch, dass im Versagensfall betreffend zumindest einen Nutzanschluß (HA) mittels einer Sicherheitseinrichtung (68) unter Einsatz des Steuerkolbens (36) für den jeweils verbleibenden Nutzanschluß (VA) eine Druckbegrenzung oder Druckabschaltung vorgesehen ist, ist sichergestellt, dass auch im Falle einer Blockade des einen Nutzanschlusses ungewollt keine Druckerhöhungen oder Druckspitzen dergestalt entstehen können, dass es zu einem Versagen von hydraulischen Komponenten kommen kann.
Abstract:
A flow dividing valve capable of instantaneously and continuously setting a flow rate ratio at which a flow rate at an inlet port is divided to a plurality of outlet ports, comprising a flow rate control spool for diving the flow rate at the inlet port at a specified flow rate ratio and a flow rate ratio setting spool for setting the flow rate ratio so as to control the flow rate control spool, whereby the flow rate ratio setting spool can be controlled by control signals from the outside.
Abstract:
Front and rear wheeled units (13, 14) of vehicle are connected together for articulated steering. Wheels on at least one unit are mounted for swivelling relative to the respective unit to provide kingpin steering in combination with articulation steering. A first embodiment has front and rear kingpin steering and articulation steering performed manually and independently of each other. In a second embodiment, a steering integrator cooperates with actuators (162, 163, 212, 213, 236, 237) which control at least the articulation steering and kingpin steering of the front wheels (22, 23) to automatically integrate two types of steering so that a controlled relationship exists between an articulation angle of the front unit (13) with respect to the rear unit (14), and swivel angles of the front wheels (22, 23) with respect to the front unit (13). A manual steering control, e.g. a steering wheel (186), controls actuation of the steering integrator. Each wheel is powered by a hydraulic motor (32, 33, 44, 45) receiving pressurized fluid from a drive apparatus comprising a flow combiner and two flow restrictors connected in parallel with each other and communicating with outlets from the wheel motors. Bypass valves (114, 115) can be used to bypass the flow combiner and flow restrictors as needed in certain applications not requiring the flow combiner, to reduce generation of heat in the hydraulic fluid.
Abstract:
A hydraulic apparatus for a construction equipment, such as an excavator, comprising a support structure connected or connectable to a movable arm of the construction equipment and a pair or rotating drums comprising a plurality of teeth, a pair of hydraulic motors, each arranged for the movement of a particular drum, and a rotating flow divider device. The flow divider device comprises at least one inlet for receiving a supply of operative fluid provided by the construction equipment and a pair of outlets which provide the operative fluid, which is suitably divided, to the pair of hydraulic motors.
Abstract:
The system (1) for automatically coordinating the direction of travel with the position of a turret rotatably mounted on the undercarriage of a hydraulic machine, comprises a hydraulic transmission circuit (10) for connecting a main pump (11) to a bidirectional hydraulic travel motor (12). The circuit includes a travel control distributor (13) able to vary the driving direction of the motor. The system (1) comprises a second hydraulic circuit (20) disposed downstream of a pilot pump (200) providing a pilot pressure (S0). The second circuit (20) includes: command valve means (21, 22) for controlling the direction of travel, activatable by the operator and able to switch said control distributor (13) by sending different command signals (S1, S2); and a reversing valve (23, 31), interposed between said command means (21, 22) and said control distributor (13), having a maintenance position, in which it maintains said command signals (S1, S2) unchanged, and a reverse position, in which it reverses the command signals (S1, S2). The system (1) further comprises coordination means (24, 25, 26, 27, 30, 31, 32, 33) able to switch or maintain said reversing valve (23) according to the position of the turret and to the command signals (S1, S2).
Abstract:
Die Erfindung betrifft eine Druckluftversorgungsanlage (10, 11, 12, 20, 30) zum Betreiben einer Pneumatikanlage (90), insbesondere einer Luftfederanlage eines Fahrzeugs, aufweisend: - eine Druckluftzuführung (1), - einen Druckluftanschluss (2) zur Pneumatikanlage (90), - einen Entlüftungsanschluss (3) zur Umgebung, - eine erste pneumatische Verbindung zwischen der Druckluftzuführung (1) und dem Druckluftanschluss (2), die einen Lufttrockner (61) und ein Trennventil aufweist, - eine zweite pneumatische Verbindung zwischen dem Druckluftanschluss (2) und dem Entlüftungsanschluss (3). Erfindungsgemäß ist dabei vorgesehen, dass das Trennventil mit einem pneumatisch entsperrbaren Rückschlagventil (63, 64) gebildet ist.
Abstract:
A hydraulic system (10) has high priority hydraulic functions (17,18,19) connected to a primary supply line (15) that receives pressurized fluid from a source and low priority hydraulic functions (20) connected to secondary supply line (16). A priority valve (28) couples the primary supply line to the secondary supply line. The priority valve detects when the source is unable to furnish enough pressurized fluid to satisfy the demands of all the high and low priority hydraulic functions. In that case the priority valve reduces or eliminates fluid flow between the primary and secondary supply lines.
Abstract:
The invention relates to a hydraulic system (1) for an excavator or other working machines, comprising a branching device (26) for supplying special consumers that have an especially elevated power consumption. The special consumer (32) is primarily supplied up to a maximum supply that is lower than the maximum power of the hydraulic source (6). The remaining difference is fully supplied to the other consumers (17, 18, 19) of the hydraulic system, the distribution of the remaining hydraulic flow not being influenced. The machine equipped with the inventive hydraulic system remains fully and unreservedly operative. A possible slow-down of the actuation movements of a consumer is proportionally reflected in the actuation movements of all other consumers so that the ratios of the working or reaction rates of the individual consumers among themselves remain the same.