摘要:
In order to overcome the problems that liquefied natural gas (LNG) handling at earlier LNG transfer terminals, in particular at earlier LNG import/export terminals, has experienced, the present invention proposes to reduce the temperature of LNG transferred from at least one LNG supply source (10) to at least one land tank (20).
摘要:
The present invention relates to a method and a system for liquefying LPG boil off gas (BOG), the system comprising a LNG fuel supply system, wherein the LNG fuel system comprises at least one LNG fuel tank 23, a LNG fuel line 5 and a second LNG fuel line 13; and a LPG cargo system, wherein the LPG cargo system comprises at least one LPG cargo tank 20, a BOG line 1, at least one reliquefaction unit 100 and a condensate line 3; wherein the system further comprises: at least one vaporizer 15, 22 provided on the LNG fuel line 5 between the LNG fuel tank 23 and the second LNG fuel line 13, wherein the at least one vaporizer 15, 22 is in thermal exchange with the LPG cargo system.
摘要:
Fuel storage and delivery systems are provided for storing pressurized liquefied natural gas (PLNG) fuel at a pressure of about 1035 kPa (150 psia) to about 7590 kPa (1100 psia) and at a temperature of about -123 DEG C (-190 DEG F) to about -62 DEG C (-80 DEG F) and delivering vaporized PLNG fuel on demand for combustion in an engine (24). The fuel storage and delivery systems have fuel storage containers (10) that are constructed from ultra-high strength, low alloy steel containing less than 9 wt.% nickel and having a tensile strength greater than 830 MPa (120 ksi) and a DBTT lower than about -73 DEG C (-100 DEG F). While not limited thereto, the present invention is especially useful for automobiles, buses, trucks and other vehicles with engines (24) designed to operate through combustion of natural gas.
摘要:
Welding methods are provided for use in joining ultra-high strength, low alloy steels to produce weldments having tensile strengths greater than about 900 MPa (130 ksi) with weld metals having fracture toughness suitable for cryogenic applications according to known principles of fracture mechanics.
摘要:
The present disclosure provides a method of fueling a transporter with liquefied fuel gas, the method comprising the steps of: providing a transporter, the transporter comprising a fuel gas storage tank for holding a liquefied fuel gas, a sub-cooler fluidly connected to the fuel gas storage tank, and a consumer; pumping the liquefied fuel gas from the fuel gas storage tank into the subcooler to create subcooled liquefied fuel gas; and introducing the subcooled liquefied fuel gas into the fuel gas storage tank. The subcooled liquefied fuel gas may be sprayed into a vapor space of the fuel gas storage tank. The method further comprises: pumping the liquefied fuel gas from the fuel gas storage tank to provide pressurized liquefied fuel gas; vaporizing the pressurized liquefied fuel gas to provide vaporized fuel gas; and providing the vaporized fuel gas to the consumer for propelling the means of transport using the vaporized fuel gas as a fuel.
摘要:
Energy efficiency and stability of LNG sendout operations in LNG terminals is increased by addition of a surge tank and booster pump downstream of a boil-off gas condenser to produce a subcooled condensate that is used to provide refrigeration to an LNG transfer line and that can be fed to the high-pressure LNG sendout pump without impacting the pressure of the main LNG sendout line, and/or without necessitating a pressure reduction device in the main LNG sendout line.
摘要:
An LNG storage tank and a method of treating boil-off gas using the same are disclosed. The LNG storage tank and the method of treating boil-off gas enable the pressure of the LNG storage tank to be maintained in a stable state without consuming boil-off gas generated in the LNG tank as propulsion fuel or without re-liquefying the boil-off gas. The storage tank comprises a thermal insulation wall, and has strengthened structure to permit a pressure increase resulting from heat influx to the LNG tank and boil-off gas generation. The method comprises permitting a pressure increase by the boil-off gas generation and LNG cargo temperature increase in the storage tank without treating the generated boil-off gas in the storage tank, so that the boil-off gas is accumulated without extracting or loss in the storage tank.
摘要:
This invention relates to a process for liquefying a gas stream rich in methane and having a pressure above about 3103 kPa (450 psia). The gas stream is expanded to a lower pressure to produce a gas phase and a liquid product having a temperature above about -112 DEG C (-170 DEG F) and a pressure sufficient for the liquid product to be at or below its bubble point. The gas phase and the liquid product are then phase separated in a suitable separator, and the liquid product is introduced to a storage means for storage at a temperature above about -112 DEG C (-170 DEG F).
摘要:
In order to overcome the problems that liquefied natural gas (LNG) handling at earlier LNG transfer terminals, in particular at earlier LNG import/export terminals, has experienced, the present invention proposes to reduce the temperature of LNG transferred from at least one LNG supply source (10) to at least one land tank (20).
摘要:
Systems and methods for optimizing the recondensation of boiloff gas in liquid natural gas storage tanks are presented. In especially preferred aspects of the inventive subject matter, BOG from a storage tank is condensed using refrigeration content of a portion of LNG sendout in a direct or indirect manner, and the BOG condensate and LNG sendout portion are combined to form a subcooled stream that is then combined with the balance of the LNG sendout, to be fed to a high pressure pump. Contemplated recondensation operations advantageously occur without using otherwise needed large volume recondensers. Moreover, the condensing and subcooling operations are decoupled from the LNG sendout rate.