Abstract:
Ein Oxidationsofen zur oxidativen Behandlung von Fasern, insbesondere zur Herstellung von Kohlenstofffasern, umfasst ein Gehäuse (12), welches abgesehen von Durchtrittsbereichen (18, 20) für die Fasern (22) gasdicht ist, und einen im Innenraum (14) des Gehäuses (12) befindlichen Prozessraum (28). Mit einer Atmosphäreneinrichtung (40, 42, 48) ist eine heiße Arbeitsatmosphäre (38) erzeugbar und in den Prozessraum (28) einblasbar, die den Prozessraum (28) unter Prozessbedingungen in einer Hauptströmungsrichtung durchströmt. Umlenkrollen (34) führen die Fasern (22) als Faserteppich (22a) nebeneinander liegend serpentinenartig durch den Prozessraum (28), wobei der Faserteppich (22a) zwischen gegenüber liegenden Umlenkrollen (34) jeweils eine Ebene aufspannt. Es ist ein Strömungsmesssystem (52) vorhanden, mittels welchem unter Prozessbedingungen ein Strömungsprofil der Arbeitsatmosphäre (38) erstellbar ist und welches wenigstens eine Sensoreinrichtung (56) zur Ermittlung der Strömungsgeschwindigkeit umfasst, welche in einem Sensorbereich (58) zwischen zwei benachbarten Faserteppichen (22a) angeordnet ist.
Abstract:
A gas diffusing nozzle device for a fluidized bed furnace having high thermal resistance and durability especially, in a high-temperature environment and capable of being manufactured at a low cost, fluidizing a fluid layer uniformly using a fluidized gas jet with a low pressure loss and controlling the flow rate of the fluidized gas jet at the outer circumferential and central portions of the interior of a retort (11) in an arbitrary and individual manner. This device is provided with a circumferential gas supply pipe (19), a central gas supply pipe (24), and a circumferential gas diffusing nozzle section (14) and a central gas diffusing nozzle section (15) respectively connected to these two gas supply pipes. Each of the gas diffusing nozzle sections has a plurality of nozzle pipes (16b, 22) with a plurality of downwardly directed fluid gas ejection ports (17) formed in the lower surfaces thereof, and at least one ring-shaped nozzle pipe (16a, 21) joined to the free ends of these nozzle pipes.
Abstract:
This disclosure concerns embodiments of an annealing device and a method for annealing granular silicon to reduce a hydrogen content of the granular silicon. The annealing device comprises at least one tube through which granular silicon is flowed downwardly. The tube includes a heating zone and (i) a residence zone below the heating zone, (ii) a cooling zone below the heating zone, or (iii) a residence zone below the heating zone and a cooling zone below the residence zone. An inert gas is flowed upwardly through the tube. The tube may be constructed from two or more tube segments. The annealing device may include a plurality of tubes arranged in parallel and housed within a shell. The annealing device and method are suitable for a continuous process.
Abstract:
A gas carburizing process comprising the steps of supplying a hydrocarbon gas and air into the interior of a furnace body in which an object material is carburized, generating a carburizing atmospheric gas by reacting the hydrocarbon gas with the air in the furnace body, and regulating the carbon potential in this atmospheric gas by maintaining the feed rate of the hydrocarbon gas at a predetermined level and controlling the feed rate of the air to a suitable level. A gas carburizing apparatus composed of a furnace body, either an introduction chamber or a recovery chamber provided at either of end portions of the furnace body, and combustion units provided in and communicating with the introduction chamber and the recovery chamber and adapted to burn the hydrocarbon gas and supply the resultant combustion gas into these chambers.
Abstract:
The invention relates to an apparatus (150) for controlling a sintering process in a sintering furnace (100), ), comprising a pre-heating zone (120) and a high heat zone (130), further comprising at least two measuring devices (151, 152, 153, 154), wherein the at least two measuring devices comprise at least one measuring device in the pre-heating zone (120) and at least one measuring device in the high heat zone (130) for analyzing a furnace atmosphere at the respective zone, and adjusting means (155, 156) for adjusting a composition of the furnace atmosphere based on measurement values acquired by the at least two measuring devices (151, 152, 153, 154) in the respective zones (110, 120, 130, 140).
Abstract:
A charging device for a shaft furnace comprises a main casing and at least one nozzle for introducing a clean gas into the casing. According to an important aspect of the invention, a controller is configured to adapt the supply (the flow rate) or pressure of clean gas in the main casing based on charging status information.
Abstract:
A method for melting a batch in a furnace, particularly an electric furnace for melting scrap to produce steel, wherein melting energy is supplied to the load and fumes are post-combusted by injecting an oxygen-containing gas into the space above the batch in the furnace. The oxygen-containing gas is injected in a number of jets each having a flow rate of around 50-1200 Nm /h and a discharge velocity at the injectors (11, 12) of around 10-150 m/s.
Abstract:
This invention is provided with a furnace body (1) having an electrode (3) and adapted to melt scrap with arc heat, an air blow port (20) from which air is blown into the furnace body (1) via an air control valve (19), a carbon blow rate indicator (CI) adapted to measure the quantity of carbon introduced into the furnace body (1), a scrap feed rate indicator (SI) adapted to measure the quantity of scrap introduced into the furnace body (1), an oxygen blow rate indicator (OI) adapted to measure the quantity of oxygen introduced into the furnace body (1), and a computing element (7) adapted to determine the quantity of air, which is required to completely burn carbon monoxide (23) in the furnace body (1), on the basis of the measurement values from the carbon blow rate indicator (CI), scrap feed rate indicator (SI) and oxygen blow rate indicator (OI) and control the degree of opening of the air control valve (19). The air the quantity of which is proportional to that of carbon monoxide (23) is blown from the air blow port (20) into the furnace to enable the combustion temperature in the furnace body (1) and the temperature in a scrap preheater to be controlled.
Abstract:
A materials processing furnace provides for debinding and sintering objects and treating effluent generated by the sintering. A heating chamber maintains a controlled atmosphere for sintering the object. A vacuum pump evacuates an effluent from the heating chamber, and an injector adds a reagent to the evacuated effluent to form a mixed gas. A catalytic converter receives the mixed gas and catalyzes one or more hazardous or offensive compounds of the effluent, thereby converting the effluent to a safer and less offensive exhaust. As a result, the furnace is suitable for operation in an office environment.
Abstract:
Il es proposé un procédé et un dispositif de détermination de la perte au feu d'au moins une partie d'un produit sidérurgique (5), dite produit, lors de son passage dans un four (4) de réchauffage situé en amont d'une décalamineuse (8), le produit circulant de préférence sur des tables à rouleaux (3, 6), ledit dispositif comprenant un ensemble de capteurs électromagnétiques (20, 30, 31, 40, 41), lequel ensemble comprend : - au moins un capteur électromagnétique (20) dudit ensemble étant agencé pour balayer selon un plan de balayage au moins en partie la face inférieure (50) du produit (5) au voisinage de la sortie du four (4), ledit capteur électromagnétique étant orienté de sorte que ledit plan (P20) de balayage du rayonnement électromagnétique dudit capteur soit perpendiculaire à une direction de défilement du produit, - un ensemble d'au moins deux capteurs électromagnétiques (30, 31) placés en amont de la décalamineuse (8) et orientés de sorte que les plans (P30, P31) de balayage de leurs rayonnements électromagnétiques soient sensiblement sur un même plan (P32) perpendiculaire à la direction de défilement de ladite au moins une partie du produit passant par la génératrice d'un rouleau d'une table à rouleaux (3), et un ensemble d'au moins deux capteurs électromagnétiques (40, 41) placés en aval de la décalamineuse (8) et orientés de sorte que les plans (P40, P41) de balayage de leurs rayonnements électromagnétiques soient sensiblement sur un même plan (P42) perpendiculaire à la direction de défilement du produit passant par la génératrice d'un rouleau d'une table a rouleaux (6), lesdits capteurs (30, 31, 40, 41) étant agencés pour déterminer la hauteur du produit en amont et en aval de la décalamineuse.