Abstract:
A control device for a work carrying system characterised in that a first point where the moving action of a work transitions from a moving action from an origin process chamber to a transfer chamber to a moving action inside the transfer chamber and a second point where the moving action of the work transitions from the moving action inside the transfer chamber to a moving action from the transfer chamber to a destination process chamber are set on a moving path of the work, and that speed patterns on the moving path are set based on a moving distance of the work and time required to open and close gate means of the origin and destination process chambers such that the opening of a gate valve at the destination is completed when the work reaches the second point on the moving path and that a moving time from the first point to the second point becomes the shortest time which is longer than the opening and closing time of the gate valve, the speed of a work carrying robot being thereby controlled in accordance with the set speed patterns, whereby any chance of the robot being temporarily stopped is minimized so as to effect high-speed carrying of a work such as a wafer requiring a shortest possible carrying time.
Abstract:
The present invention relates to a robot (1) configured to exhibit a robot identity and/or a robot personality at least partly through execution of computer-readable program code. The robot comprises a robot head (3) configured for connection to a face part (9; 9A, 9B) including a display surface, the robot being configured to cause the display of a face image depicting a face of said robot on said display surface. The robot head (3) is configured for detachable connection to said face part to allow detachable connection of different face parts (9; 9A, 9B) to the robot head, and the robot (1) is configured to automatically adapt said robot identity and/or said robot personality based on the face part currently being connected to the robot head (3). This allows a user of the robot to change character of the robot, i.e. to change the robot identity and/or personality, by connection of different face parts to the robot head.
Abstract:
It provides a portable apparatus for controlling a robot and a method therefor. The portable apparatus includes: an orientation sensor, being adapted for measuring orientation of said portable apparatus; an HMI device, being adapted for detecting two-dimensional manual motion relative to said HMI device; and a processing unit, being adapted for receiving a first signal representing said measured orientation of said portable apparatus and a second signal representing said detected two-dimensional manual motion relative to said HMI device and controlling a part of said robot to move in a direction in consideration of said measured orientation of said portable apparatus and said detected two-dimensional manual motion relative to said HMI device. By having the portable apparatus and the method therefor as explained herein, the two-dimensional manual movement on touch panel is integrated with orientation of the portable apparatus and an integration of these is mapped by the robot, which makes it possible to define a path in three dimensional space for jogging/teaching robot's movements in three dimension. This renders more intuitive than realization of linear robot movement by the portable orientation.
Abstract:
A machine tool has a carriage (28), has a workpiece carriage (28) for carrying a workpiece (32) from which material is removed by a tool (54) carried by a tool carriage (48). A two-axis scale (86, 88) is attached to one of the carriages, and cooperates with a reading head (96, 98) attached to the other carriage. The output from the reading head is processed by signalling processing means to provide an indication of the position and/or movement of the carriages relative to each other and for generating positional data about one or both of the carriages to assist in controlling their movement in order to perform a machine operation. By directly measuring the relative positions of the two carriages, problems arising from, for example, distortions of the machine frame on which the carriages are mounted are at least mitigated. A preferred embodiment of the machine incorporates a second reading head attached to one carriage and incorporating the scale on another carriage so that the outputs from the two reading heads can be used to determine whether there has been any relative angular displacement of the paths followed by the carriages. There is also provided a method of determining the linear movement of one of the carriages relative to the other, and the machining process achieved using the machine tool.