摘要:
An electromagnetic wakefield detector placed in close proximity to a design trajectory of a non-relativistic charged particle beam produces an optical signal in response to passage of the charged particle beam without interrupting the charged particle beam. A photon detector receives the optical signal and produces a corresponding output. The wakefield detector may be based on the electro optic effect. Specifically, the detector may measure the effect of the charged particle beam a beam of radiation on the phase of radiation travelling parallel to the beam in a nearby electro optic waveguide. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
In one embodiment, a first vacuum chamber of an electron beam column has an opening which is positioned along an optical axis so as to pass a primary electron beam that travels down the column. A source that emits electrons is positioned within the first vacuum chamber. A beam-limiting aperture is configured to pass a limited angular range of the emitted electrons. A magnetic immersion lens is positioned outside of the first vacuum chamber and is configured to immerse the electron source in a magnetic field so as to focus the emitted electrons into the primary electron beam. An objective lens is configured to focus the primary electron beam onto a beam spot on a substrate surface so as to produce scattered electrons from the beam spot. Controllable deflectors are configured to scan the beam spot over an area of the substrate surface.
摘要:
A technique for improving ion implantation throughput and dose uniformity is disclosed. In one exemplary embodiment, a method for improving ion implantation throughput and dose uniformity may comprise measuring an ion beam density distribution in an ion beam. The method may also comprise calculating an ion dose distribution across a predetermined region of a workpiece that results from a scan velocity profile, wherein the scan velocity profile comprises a first component and a second component that control a relative movement between the ion beam and the workpiece in a first direction and a second direction respectively, and wherein the ion dose distribution is based at least in part on the ion beam density distribution. The method may further comprise adjusting at least one of the first component and the second component of the scan velocity profile to achieve a desired ion dose distribution in the predetermined region of the workpiece.
摘要:
An apparatus for visualizing an ion beam editing operation of a sample. The apparatus comprises a charged particle beam column for producing an charged particle beam and for directing the charged particle beam onto the sample and beam rastering electronics (BRE) for controlling a movement and a dwell time of the charged particle beam. The apparatus further comprises a detector for detecting charged particles stemming from the sample as a result of the charged particle beam impinging on the sample and a multi-channel scalar (MCS) coupled to the detector and to the IBRE, and time-correlated with the BRE, the MCS for binning events detected at the detector as a function of time duration from a start event. Finally, the apparatus comprises an analysis module connected to the MCS for processing data from the MCS into a display signal, and a display module connected to the analysis module for displaying the display signal.
摘要:
A method for improving the productivity of a hybrid scan implanter by determining an optimum scan width is provided. A method of tuning a scanned ion beam is provided, where a desired beam current is determined to implant a workpiece with desired properties. The scanned beam is tuned utilizing a setup Faraday cup. A scan width is adjusted to obtain an optimal scan width using setup Faraday time signals. Optics are tuned for a desired flux value corresponding to a desired dosage. Uniformity of a flux distribution is controlled when the desired flux value is obtained. An angular distribution of the ion beam is further measured.
摘要:
A method derives a terminal return current to adjust and/or compensate for variations in beam current during ion implantation. One or more individual upstream current measurements are obtained from a region of an ion implantation system. A terminal return current, or composite upstream current, is derived from the one or more current measurements. The terminal return current is then employed to adjust scanning or dose of an ion beam in order to facilitate beam current uniformity at a target wafer.
摘要:
Dispositif de réglage d'un faisceau de particules chargées.Ce dispositif comprend des moyens de réglage (40) pour mémoriser les caractéristiques souhaitées pour le faisceau (14), déterminer les valeurs des paramètres de réglage de l'appareil (2) en fonction de ces caractéristiques, mémoriser ces valeurs et donner ces valeurs mémorisées aux paramètres de réglage de l'appareil. L'invention s'applique notamment à la fabrication de nano-structures.
摘要:
A system is disclosed for measuring properties of a charged particle beam (8) output by a charged particle beam generator (15). The system comprises: a probe assembly (21), a beam deflection control module (23) and a detection module (22). The probe assembly comprises a plurality of probes (30) arrayed across a plane on a mount, each probe comprising at least two elongate, electrically conductive elements (32, 33, 34) arranged such that their respective elongate directions make a non-zero angle with one another in the plane of the array. The beam deflection control module is adapted to control the deflection of the charged particle beam along a measurement path which crosses sequentially at least two of the elongate, electrically conductive elements of at least one of the probes. The detection module is connected to the electrically conductive elements of each of the plurality of probes, and is adapted to detect electric signals output sequentially by the electrically conductive elements of each probe upon intersection of the charged particle beam therewith. The detected electric signals from each probe are indicative of properties of the charged particle beam when directed to the location of the respective probe across the probe assembly by the charged particle beam generator. A corresponding method of measuring properties of a charged particle beam output by a charged particle beam generator is also disclosed.
摘要:
An ion implantation system and method are provided where an ion source generates an ion and a mass analyzer mass analyzes the ion beam. A beam profiling apparatus translates through the ion beam along a profiling plane in a predetermined time, wherein the beam profiling apparatus measures the beam current across a width of the ion beam concurrent with the translation, therein defining a time and position dependent beam current profile of the ion beam. A beam monitoring apparatus is configured to measure the ion beam current at an edge of the ion beam over the predetermined time, therein defining a time dependent ion beam current, and a controller determines a time independent ion beam profile by dividing the time and position dependent beam current profile of the ion beam by the time dependent ion beam current, therein by cancelling fluctuations in ion beam current over the predetermined time.