Abstract:
The invention features a rechargeable alkaline battery comprising an anode; a cathode; and an electrolyte; wherein at least one of anode, the cathode and the electrolyte includes a solid, ionically conducting polymer material having very high ionic diffusivity and conductivity at room temperature and over a wide temperature range, and methods for the manufacture of same.
Abstract:
A printed 3D functional part includes a 3D structure comprising a structural material, and at least one functional electronic device is at least partially embedded in the 3D structure. The functional electronic device has a base secured against an interior surface of the 3D structure. One or more conductive filaments are at least partially embedded in the 3D structure and electrically connected to the at least one functional electronic device.
Abstract:
A battery cathode is made by mixing electrochemically active cathode material, graphite, water and an aqueous based binder to provide a mixture. The mixture is extruded continuously into a cathode. Water is then removed from the cathode. The cathode is cut into individual pieces.
Abstract:
Embodiments described herein generally relate to semi-solid suspensions, and more particularly to systems and methods for preparing semi-solid suspensions for use as electrodes in electrochemical devices such as, for example batteries. In some embodiments, a method for preparing a semi-solid electrode includes combining a quantity of an active material with a quantity of an electrolyte to form an intermediate material. The intermediate material is then combined with a conductive additive to form an electrode material. The electrode material is mixed to form a suspension having a mixing index of at least about 0.80 and is then formed into a semi-solid electrode.
Abstract:
The present invention provides an electrolyte component containing one or more salts including lithium bis(oxalate)borate (LiBOB), a solvent, propylene carbonate (PC) and a crystallisable polymer wherein said LiBOB is present as a weight percentage of 0.5 % or more, said propylene carbonate is present as a weight percentage of between 5% and 90% and the crystallisable polymer is present at a weight percentage of greater than 1%. It also provides a galvanic cell formed from the above and a process for forming same.
Abstract:
A process of co-extrusion of a thin electrode sheet with a thin electrolyte polymer sheet directly onto a current collector sheet for a lithium polymer battery. The process includes the steps of: (a) mixing a polymer with active electrode material, lithium salt and electronic conductive material in a first mixing chamber to form an electrode slurry; (b) mixing a polymer with a lithium salt in a second mixing chamber to form an electrolyte slurry; (c) feeding the electrode slurry through a first flow channel and the electrolyte slurry through a second flow channel; (d) extruding the electrode slurry in the form of a thin electrode sheet through a first die opening connected to the first flow channel, the electrode slurry being extruded directly onto a current collector sheet; and (e) concurrently extruding the electrolyte slurry in the form of a thin electrolyte sheet through a second die opening adjacent to the first die opening and connected to the second flow channel, the thin electrolyte sheet being extruded directly onto the thin electrode sheet.
Abstract:
A novel method for the production of a lithium-polymer energy store and a lithium-polymer energy store produced by said method are disclosed, comprising an active cathode mass, a polymer electrolyte separator and an active anode mass. The active anode masses are milled or intensively mixed with conducting salts and/or conducting salt additives and/or solvents, the active electrode masses then moulded into batches with polymer binders, extruded and separately laminated on a discharge material. The laminated electrode masses are assembled, optionally with laminated separators in the sandwich position such that the active electrode masses comprise a porous structure. The invention avoids the disadvantage of conventional methodology by means of a novel method concept with novel components. The method particularly achieves a specific and ordered arrangement and coordination of the active electrode components with optimised efficiency, in contrast to the conventional method wherein the components of the electrode masses are only statistically distributed according to the principle of chance.