半導体レーザ素子および半導体レーザ素子製造方法
    2.
    发明申请
    半導体レーザ素子および半導体レーザ素子製造方法 审中-公开
    半导体激光元件和半导体激光元件制造方法

    公开(公告)号:WO2009031206A1

    公开(公告)日:2009-03-12

    申请号:PCT/JP2007/067231

    申请日:2007-09-04

    Abstract:  本発明にかかる半導体レーザ素子1は、III族空孔の拡散によって形成された混晶化部分を含む窓領域23と、量子井戸構造の活性層15を有する非窓領域24とを備え、所定の原子を吸収しIII族空孔の拡散を促進する促進膜を窓領域23上に設けて混晶化部分を形成する半導体レーザ素子において、活性層15の近傍側の層にV族サイトを優先的に置換する不純物がドーピングされ、窓領域におけるエネルギーバンドギャップと非窓領域におけるエネルギーバンドギャップとの差が50meV以上であることを特徴とする。

    Abstract translation: 本发明提供一种半导体激光元件(1),其包括由III族空位扩散形成的混合晶体部分的窗口区域(23)和具有量子阱(15)的有源层(15)的非窗口区域(24) 井结构。 在窗口区域(23)上形成用于通过吸收预定原子来促进III族空位扩散的促进膜,从而形成混合晶体部分。 半导体激光元件(1)的特征在于,有源层(15)附近的层掺杂有用于替代V族位置的杂质,使得窗口区域中的能带间隙与能带之间的差异 非窗口区域的间隙为50meV以上。

    QUANTUM CASCADE SURFACE EMITTING SEMICONDUCTOR LASER DEVICE AND METHOD OF MANUFACTURING A SEMICONDUCTOR LASER DEVICE
    3.
    发明申请
    QUANTUM CASCADE SURFACE EMITTING SEMICONDUCTOR LASER DEVICE AND METHOD OF MANUFACTURING A SEMICONDUCTOR LASER DEVICE 审中-公开
    量子表面发射半导体激光器件及制造半导体激光器件的方法

    公开(公告)号:WO2007132425A1

    公开(公告)日:2007-11-22

    申请号:PCT/IB2007/051825

    申请日:2007-05-14

    Abstract: The invention provides a quantum cascade laser device (100, 101) in a semiconductor substrate (11), which quantum cascade laser device (100, 101) comprises a plurality of semiconductor layers (14) having a side surface (13) that exposes a side of each semiconductor layer. The quantum cascade laser device (100,101) emits a light beam (L) in a direction substantially perpendicular to the side surface (13) of the quantum cascade laser device (100,101), which side surface (13) is essentially parallel to a top surface of the semiconductor substrate (11). The power loss of the quantum cascade laser device (100,101) is reduced considerably, because the light beam (L) is not diffracted or reflected before it is emitted from the quantum cascade laser device (100,101), which improves the power efficiency of the quantum cascade laser device (100,101). The invention further provides a method of manufacturing such a quantum cascade laser device (100,101).

    Abstract translation: 本发明提供了半导体衬底(11)中的量子级联激光器件(100,101),该量子级联激光器件(100,101)包括多个半导体层(14),该半导体层具有暴露一个 侧。 量子级联激光器件(100,101)在与量子级联激光器件(100,101)的侧表面(13)基本垂直的方向上发射光束(L),该侧表面(13)基本上平行于顶表面 的半导体衬底(11)。 量子级联激光器件(100,101)的功率损耗大大降低,因为光束(L)在从量子级联激光器件(100,101)发射之前不被衍射或反射,从而提高了量子级联激光器件的功率效率 级联激光装置(100,101)。 本发明还提供一种制造这种量子级联激光装置(100,101)的方法。

    TUNABLE SOI LASER
    4.
    发明申请
    TUNABLE SOI LASER 审中-公开
    TUNABLE SOI激光器

    公开(公告)号:WO2015107365A1

    公开(公告)日:2015-07-23

    申请号:PCT/GB2015/050104

    申请日:2015-01-19

    Abstract: A wavelength tunable silicon-on-insulator (SOI) laser comprising: a laser cavity including: a semiconductor gain medium (2) having a front end (21) and a back end (22); and a phase-tunable waveguide platform (3) coupled to the front end of the semiconductor gain medium; wherein the phase-tunable waveguide platform includes a first Distributed Bragg Reflector (31) and a second Distributed Bragg Reflector (32); at least one of the Distributed Bragg Reflectors having a comb reflectance spectrum; and wherein a mirror (10) of the laser cavity is located at the back end (22) of the semiconductor gain medium. The coupled cavity allows via the Vernier effect improved mode selectivity and the electro-optic tuning of the gratings results in faster wavelength tuning of the ECLD.A further phase control element (53) may compensate for a thermal wavelength drift of the laser.

    Abstract translation: 一种波长可调的绝缘体上硅(SOI)激光器,包括:激光腔,包括:具有前端(21)和后端(22)的半导体增益介质(2) 以及耦合到所述半导体增益介质的前端的相位可调波导平台(3); 其中所述相位可调谐波导平台包括第一分布布拉格反射器(31)和第二分布布拉格反射器(32); 分布布拉格反射器中的至少一个具有梳状反射光谱; 并且其中所述激光腔的反射镜(10)位于所述半导体增益介质的后端(22)处。 耦合腔允许通过游标效应改善模式选择性,并且光栅的电光调谐导致ECLD的更快的波长调谐。另外的相位控制元件(53)可以补偿激光器的热波长漂移。

    SEMICONDUCTOR LIGHT SOURCE
    5.
    发明申请
    SEMICONDUCTOR LIGHT SOURCE 审中-公开
    半导体光源

    公开(公告)号:WO2007030330A2

    公开(公告)日:2007-03-15

    申请号:PCT/US2006/033003

    申请日:2006-08-23

    Inventor: CHEN, Yifan

    Abstract: A light source is based on a combination of silicon and calcium fluoride (CaF 2 ). The silicon and the calcium fluoride need not be pure, but may be doped, or even alloyed, to control their electrical and/or physical properties. Preferably, the light source employs interleaved portions, e.g., arranged as a multilayer structure, of silicon and calcium fluoride and operates using intersubband transitions in the conduction band so as to emit light in the near infrared spectral range. The light source may be arranged so as to form a quantum cascade laser, a ring resonator laser, a waveguide optical amplifier.

    Abstract translation: 光源基于硅和氟化钙(CaF 2 N 2)的组合。 硅和氟化钙不必是纯的,而是可以掺杂或甚至合金化以控制其电和/或物理性质。 优选地,光源采用硅和氟化钙的交错部分,例如布置为多层结构,并且使用导带中的子带间跃迁进行操作,以便在近红外光谱范围内发光。 光源可以被布置成形成量子级联激光器,环形谐振器激光器,波导光学放大器。

    OPTO-ELECTRONICAL COMPONENT FOR THE INFRARED WAVELENGTH RANGE
    6.
    发明申请
    OPTO-ELECTRONICAL COMPONENT FOR THE INFRARED WAVELENGTH RANGE 审中-公开
    光电子器件FOR红外波长范围

    公开(公告)号:WO99030372A2

    公开(公告)日:1999-06-17

    申请号:PCT/DE1998/003641

    申请日:1998-12-11

    Abstract: A silicon-based, IC-compatible luminescent diode (LED) or laser diode (LD) has a light-emitting layer based on semiconductor ruthenium silicide (Ru2Si3) on silicon for the near infrared wavelength range around 1.5 mu m. This component has an epitaxial Si/Ru2Si3Si or Si/Ru2Si3 heterostructure with band discontinuities of more than 0.05 eV for electrons or holes in order to achieve charge carrier confinement and thus an efficient light yield at room temperature.

    Abstract translation: 本发明涉及一种基于硅的,IC-兼容发光二极管(LED),或在约1.5微米具有在硅上的波长范围内的近红外半导体钌硅化物(Ru2Si3)的基础上的发光层的激光二极管(LD)。 在这种情况下,该装置外延的Si / Ru2Si3 /硅或硅/ Ru2Si3异质结构具有更大的带突变点为0.05电子伏特为电子和空穴以达到在室温下的电荷载流子限制,因此一个有效的光输出。

    GROUP IV SEMICONDUCTOR OPTICAL DEVICE
    7.
    发明申请
    GROUP IV SEMICONDUCTOR OPTICAL DEVICE 审中-公开
    第IV组半导体光学器件

    公开(公告)号:WO1996028852A1

    公开(公告)日:1996-09-19

    申请号:PCT/JP1995000435

    申请日:1995-03-15

    Inventor: HITACHI, LTD.

    Abstract: A semiconductor optical device which uses a mixed crystal comprising Ge, C, Sn, etc., of Group IV semiconductors having a different atomic radius from that of Si as a light emission layer, disposes light emission layers at a period of integral multiples of the half of the light emission wavelength, and separates the light emission layer from a light modulation region. Since a multi-layered structure of the Group IV semiconductors such as Si and Ge, C, Sn is used, local strain due to a difference in atomic radius increases light emission efficiency, and the multi-layered film functions as an interference device of light. Because only light with a wavelength twice this period can exist inside the multi-layered film, light emission efficiency can be increased. Further, since the multi-layered structure has a periodical structure which is integral multiples of the half of the light emission wavelength, the light emission intensity can be increased. Since the light emission region and the light modulation region are formed adjacent to each other on the same substrate, a semiconductor optical device capable of high-speed light modulation can be accomplished. Because this structure can extremely reduce lattice mismatching with the substrate, no limitation on a layer thickness such as a critical film thickness exists. Accordingly, a design freedom for a film thickness for confining light and carriers and a band discontinuity value can increase, and a light emission intensity can be improved to about ten times that with the prior art devices.

    Abstract translation: 使用具有与Si的原子半径不同的第IV族半导体的Ge,C,Sn等的混晶作为发光层的半导体光学器件,以发光层的整数倍的周期配置发光层 一半的发光波长,并且将发光层与光调制区域分离。 由于使用诸如Si和Ge,C,Sn的IV族半导体的多层结构,因原子半径的差异导致的局部应变增加了发光效率,并且多层膜用作光的干涉装置 。 因为在多层膜内只能存在波长为两倍的波长的光,所以可以提高发光效率。 此外,由于多层结构具有作为发光波长的一半的整数倍的周期结构,所以可以提高发光强度。 由于发光区域和光调制区域在相同的基板上彼此相邻地形成,因此可以实现能够进行高速调光的半导体光学器件。 因为这种结构可以极大地减少与衬底的晶格失配,所以不存在诸如临界膜厚度等层厚度的限制。 因此,用于限制光和载流子的膜厚度的设计自由度和带不连续值可以增加,并且发光强度可以提高到现有技术装置的约10倍。

    SEMICONDUCTOR LIGHT SOURCE BASED ON A COMBINATION OF SILICON AND CALCIUM FLUORIDE
    8.
    发明申请
    SEMICONDUCTOR LIGHT SOURCE BASED ON A COMBINATION OF SILICON AND CALCIUM FLUORIDE 审中-公开
    基于硅和氟化钙组合的半导体光源

    公开(公告)号:WO2007030330A3

    公开(公告)日:2008-04-17

    申请号:PCT/US2006033003

    申请日:2006-08-23

    Inventor: CHEN YIFAN

    Abstract: A light source is based on a combination of silicon and calcium fluoride (CaF 2 ). The silicon and the calcium fluoride need not be pure, but may be doped, or even alloyed, to control their electrical and /or physical properties. Preferably the light source employs interleaved portions, e.g., arranged as a multilayer structure, of silicon (109) and calcium fluoride (107, 111 ) and operates using intersubband transitions in the conduction band so as to emit light in the near infrared spectral range. The light source may be arranged so as to form a quantum cascade laser, a ring resonator laser, a waveguide optical amplifier.

    Abstract translation: 光源基于硅和氟化钙(CaF 2 N 2)的组合。 硅和氟化钙不必是纯的,而是可以掺杂或甚至合金化以控制其电和/或物理性质。 优选地,光源采用例如布置为硅(109)和氟化钙(107,111)的多层结构的交错部分,并且使用导带中的子带间转变进行操作,以便在近红外光谱范围内发光。 光源可以被布置成形成量子级联激光器,环形谐振器激光器,波导光学放大器。

    A SEMICONDUCTOR ISOTOPE SUPERLATTICE
    10.
    发明申请
    A SEMICONDUCTOR ISOTOPE SUPERLATTICE 审中-公开
    半导体同位素超导

    公开(公告)号:WO02015279A1

    公开(公告)日:2002-02-21

    申请号:PCT/AU2000/000976

    申请日:2000-08-15

    Abstract: A Sin/ Sim supelattices (10) is grown on a substrate (11) where the thicknesses of the Si and Si layers n and m, respectively, is in the unit of atomic layers. The Sin/ Sin superlattice (10) is composed of alternating layers of isotopically enriched Si and Si layers in the crystallographic direction . The number of periods, that is, the number of Si and Si layer pairs in this embodiment, is two. The superlattice (10) is grown in a direction that is not parallel to the direction of the dominant intervalley electron scattering. The most preferred direction of the isotope superlattice for the case of Si is since it has the same angles to the directions (A-B, C-C'', C'-C''').

    Abstract translation: A <28> Sin / 30> Sim supattatt(10)生长在基板(11)上,其中分别为<28> Si和30 Si层n和m的厚度为原子层的单位 。 <28> Sin / 30> Sin超晶格(10)由晶体方向<111>的同位素富集的28 Si和30 Si层的交替层组成。 本实施例中的周期数,即<28> Si和<30> Si层对的数量是两个。 超晶格(10)在与主要间隔电子散射方向不平行的方向上生长。 由于与方向(A-B,C-C“,C'-C”')具有相同的角度,所以对于Si的情况,同位素超晶格最优选的方向是<111>。

Patent Agency Ranking