Abstract:
A fast algorithm is used to study the transient behavior due to the step-like pulse. This algorithm consists of two parts: The algorithm I reduces the computational complexity to T 0 N 3 for large systems as long as T 0 N 3 whenever T 2 beyond which it becomes T log 2 N for even longer time. Hence it is of order O(1) if T 2 . Benchmark calculation has been done on graphene nanoribbons with N=10 4 and T=10 8 . This new algorithm allows many large scale transient problems to be solved, including magnetic tunneling junctions and ferroelectric tunneling junctions that could not be achieved before.
Abstract:
A solid-state field-effect transistor sensor for detecting chemical and biological species and for detecting changes in radiation is disclosed. The device includes a porous or structured channel section to improve device sensitivity. The device is operated in a fully depleted mode such that a sensed biological, chemical or radiation change causes an exponential change in channel conductance.
Abstract:
According to some embodiments, an article of manufacture comprises a substrate; a molecular layer on the substrate comprising at least one charge storage molecule coupled to the substrate by a molecular linker; a solid barrier dielectric layer directly on the molecular layer; and a conductive layer directly on the solid barrier dielectric layer. In some embodiments, the solid barrier dielectric layer is configured to provide a voltage drop across the molecular layer that is greater than a voltage drop across the solid barrier dielectric layer when a voltage is applied to the conductive layer. In some embodiments, the molecular layer has a thickness greater than that of the solid barrier dielectric layer. The article of manufacture contains no electrolyte between the molecular layer and the conductive layer.
Abstract:
Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of a arrays on coatings comprising nanostructure association groups, pattering using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices).
Abstract:
Receiver circuits using nanotube based switches and logic. Preferably, the circuits are dual-rail (differential). A receiver circuit(l?) includes a differential input having a first and second input link (25, 25'), and a differential output having a first and second output link (30, 30'). First, second, third and fourth switching elements (15, 20, 35, 40) each have an input node, an output node, a nanotube channel element, and a control structure disposed in relation to the nanotube channel element to controllably form and unform an electrically conductive channel between said input node and said output node. The receiver circuit can sense small voltage inputs and convert them to larger voltage swings.
Abstract:
Methods and apparatuses for nanoenabled memory devices and anisotropic charge carrying arrays are described. In an aspect, a memory device includes a substrate, a source region of the substrate, and a drain region of the substrate. A population of nanoelements is deposited on the substrate above a channel region, the population of nanolements in one embodiment including metal quantum dots. A tunnel dielectric layer is formed on the substrate overlying the channel region, and a metal migration barrier layer is deposited over the dielectric layer. A gate contact is formed over the thin film of nanoelements. The nanoelements allow for reduced lateral charge transfer. The memory device may be a single or multistate memory device. In a multistate memory device which comprises one or more quantum dots or molecules having a plurality of discrete energy levels, a method is disclosed for charging and/or discharging the device which comprises filling each of the plurality of discrete energy levels of each dot or molecule with one or more electrons, and subsequently removing individual electrons at a time from each discrete energy level of the one or more dots or molecules.
Abstract:
A trench-type storage device includes a trench in a substrate (100), with bundles of carbon nanotubes (202) lining the trench and a trench conductor (300) filling the trench. A trench dielectric (200) may be formed between the carbon nanotubes and the sidewall of the trench. The bundles of carbon nanotubes form an open cylinder structure lining the trench. The device is formed by providing a carbon nanotube catalyst structure on the substrate and patterning the trench in the substrate; the carbon nanotubes are then grown down into the trench to line the trench with the carbon nanotube bundles, after which the trench is filled with the trench conductor.
Abstract:
The present invention provides a MOSFET device comprising: a substrate (1104) including a plurality of atomic ridges, each of the atomic ridges including a semiconductor layer comprising Si (1106) and a dielectric layer comprising a Si compound (1108); a plurality nanogrooves between the atomic ridges; at least one elongated molecule located in at least one of the nanogrooves (1110); a porous gate layer located on top of the plurality of atomic ridges (1112). The present invention also provides a membrane comprising: a substrate; and a plurality of nanowindows in the substrate and a method for forming nanowindows in a substrate. The present invention also provides a multi-tip array device comprising: a substrate; a multi-tip array of atomic tips on the substrate, the multi-tip array having a pitch of 0.94 to 5.4 nm between adjacent tips in at least one direction; and means for moving the substrate. The present invention also provides an atomic claw comprising: a mounting block; a paddle having a multi-tip array thereon, the multi-tip array having a pitch of 0.94 to 5.4 nm between adjacent tips in at least one direction; and a cantilever connected to the paddle and the mounting block, wherein the cantilever allows the paddle to be moved in at least one arcuate direction.
Abstract:
In a method for fabricating a graphene structure, there is formed on a fabrication substrate a pattern of a plurality of distinct graphene catalyst materials. In one graphene synthesis step, different numbers of graphene layers are formed on the catalyst materials in the formed pattern. In a method for fabricating a graphene transistor, on a fabrication substrate at least one graphene catalyst material is provided at a substrate region specified for synthesizing a graphene transistor channel and at least one graphene catalyst material is provided at a substrate region specified for synthesizing a graphene transistor source, and at a substrate region specified for synthesizing a graphene transistor drain. Then in one graphene synthesis step, at least one layer of graphene is formed at the substrate region for the graphene transistor channel, and at the regions for the transistor source and drain there are formed a plurality of layers of graphene.
Abstract:
A semiconductor structure includes an n-channel field effect transistor (NFET) nanowire, the NFET nanowire comprising a film wrapping around a core of the NFET nanowire, the film wrapping configured to provide tensile stress in the NFET nanowire. A method of making a semiconductor structure includes growing a film wrapping around a core of an n-channel field effect transistor (NFET) nanowire of the semiconductor structure, the film wrapping being configured to provide tensile stress in the NFET nanowire.