Abstract:
The present invention relates to a method for propelling an aircraft (1), and in particular to a method wherein the engines (M1-M4) of the aircraft (1) with three or more engines are controlled in such a manner that the aircraft (1) can apply the current method to take off from a short and/or slippery runway (A) with a higher takeoff weight than with existing methods. The invention aims to improve the efficiency of flight operation. The invention enables the aircraft to take off with a higher payload and/or with more fuel. To this end, during a takeoff of the aircraft (1) a symmetrical thrust is applied, wherein at least one engine (M1-M4) provides less thrust (F1-F4) than the maximum thrust of this engine (M1-M4), and wherein at least one engine (M1-M4) mounted farther from the symmetry plane of the aircraft provides less thrust than an engine (M2, M3) mounted closer to or on the symmetry plane.
Abstract:
A rudder bias system for an aircraft with a right engine and a left engine includes a component determining a left and right primary and secondary thrust estimates. The system includes a left engine thrust estimate selector determining a left selected estimate based on the left thrust estimates and a right engine thrust estimate selector determining a right selected estimate based on the right thrust estimates. The system includes an enable and mode component determining one or more corresponding validities for the thrust estimates. The system includes a control component generating an engage command based on a thrust differential between the right engine and the left engine, calculated from the left selected estimate and the right selected estimate and a torque command based on an equivalent pedal force assistance calculated as a difference between the thrust differential and an activation threshold.
Abstract:
L'invention concerne un système de propulsion d'aéronef comportant - une turbomachine, - au moins un moteur électrique (M1, M6) comportant un premier demi-moteur (M 1.1, M6.1) et un second demi-moteur (M1.2, M6.2), comprenant respectivement un premier stator et un second stator coopérant avec un rotor commun dudit moteur (M1, M6), au moins une première source d'énergie (B) apte à délivrer une tension continue, au moins un générateur électrique (FMG) entraîné par la turbomachine et apte à générer une tension alternative de manière à former une seconde source d'énergie, et associé à un redresseur actif (4) apte à transformer ladite tension alternative en une tension continue dont la valeur est pilotée par ledit redresseur actif (4), la première source d'énergie (B) à étant reliée à la sortie du redresseur actif (4).
Abstract:
Le dispositif (1 ) comporte des moyens de commande (3) pour activer une fonction de protection consistant à commander automatiquement les moteurs (M 1 à M4) pour qu'ils fournissent une puissance maximale lorsque des conditions de déclenchement sont réalisées, et des moyens d'inhibition (8) pour inhiber la fonction de protection et ceci uniquement lorsque tous les moteurs qui sont agencés sur une même aile de l'avion sont simultanément en panne.
Abstract:
L'invention concerne un procédé (100) de correction du vecteur de poussée créé par un groupe de poussée associé à des moyens électriques correcteurs dudit vecteur de poussée. Un tel groupe de poussée comporte un rotor mécanique mu en rotation par un arbre rotatif d'un moteur à combustion interne (12a-e) en réponse à une commande de puissance (PC). Un tel procédé (100) comporte une étape (110) d'élaboration de cette dernière (PC) pour réduire l'écart (RSE) entre une vitesse de rotation de consigne (RSI) et une vitesse de rotation mesurée (RSM) de l'arbre du moteur à combustion interne (12a-e) et ainsi asservir en vitesse l'arbre dudit moteur à combustion interne (12a-e). Le procédé comporte en outre une étape (120) d'élaboration d'une commande d'actionnement (AC) de moyens électriques correcteurs (19a-e) de vecteur de poussée élaborée à partir dudit écart (RSE) indépendamment dudit asservissement en vitesse de l'arbre dudit moteur à combustion interne (12a-e).
Abstract:
Various embodiments relate to a system and method of suppressing contrails emitted from an aircraft. One such system comprises a semi-closed cycle gas turbine engine of an aircraft that exhausts gases in use; a recuperator component that is positioned within an exhaust gas stream of the semi-closed cycle gas turbine engine to remove a portion of the exhaust gas stream in a form of heat energy; and one or more additional heat exchangers in a recirculation path that are configured to condense the heat energy of the portion of the exhaust gas to remove water vapor from the exhaust gas stream. Other systems and methods are also provided.
Abstract:
The present invention relates to an integrated controller unit (10) for controlling at least one engine motor (26) and at least one servo motor (28), comprising a power link section (12) for connecting the controller unit (10) to an external power supply (14) and supplying power to the individual sections of the controller unit (10), a data link section (16) for connecting the controller unit (10) to an external data source, a computing section (18) operatively connected with the power link section (12) and the data link section (16) for receiving data from the external data source, performing computing tasks based on the received data and outputting control commands, an engine interface section (20) for driving the at least one engine motor (26), and a servo interface section (22) for driving the at least one servo motor (28), wherein the engine interface section (20) and the servo interface section (22) are both operatively connected to the computing section (18) and adapted to drive the at least one engine motor (26) and the at least one servo motor (28), respectively, based on control commands output by the computing section (18).
Abstract:
A thrust reverser actuation structure utilizing a single power source (60) for controlling the operation of thrust reverser actuators (26, 40) associated with plural jet engines (12, 16). The thrust reverser actuation structure has a power drive unit (60, 74) with an output shaft (62) that can be located in the fuselage of an aircraft and a pair of mechanical drive trains (68, 70) extend therefrom and are connected separately to the thrust reverser actuators (26, 40) of jet engines (12, 16) located on opposite wings of an aircraft. With the single power source (60) and the mechanical drive train the occurrence of a jam in the thrust reversers of one jet engine will result in stopping the power drive unit and the thrust reversers of the other engine at the same position as those that are jammed. This minimizes the likelihood of asymmetric reverse thrust.
Abstract:
There is provided a system for controlling at least first and second engines of an aircraft, comprising a common controlling unit configured to convert data representative of a thrust command transmitted by an actuating element controllable by a pilot or by an auto- throttle of the aircraft, into: (a) at least one first command usable by a controller of the first engine for controlling its operation based at least on said first command, and (b) at least one second command usable by a controller of the second engine for controlling its operation based at least on said second command, wherein said common controlling unit is operable to perform said conversion based at least on data representative of a level of operability of each engine, thereby making each engine to either comply with said thrust command or to operate differently from said thrust command, based at least on its level of operability.