US11707004B2

A phase-change memory (PCM) device includes a first electrode, a second electrode, a memory layer, and a heater. The memory layer includes a phase-change material and is electrically coupled between the first electrode and the second electrode. The heater is arranged near the memory layer and is configured to heat a programming region of the memory layer in response to an electric current that passes through the heater. The heater is coupled to a power source via an electric current path that does not pass through the memory layer.
US11706997B2

An electronic device may include a semiconductor memory, and the semiconductor memory may include a substrate; a variable resistance element formed over the substrate and exhibiting different resistance values representing different digital information, the variable resistance element including a free layer having a variable magnetization direction, a pinned layer having a fixed magnetization direction and a tunnel barrier layer interposed between the free layer and the pinned layer; and a blocking layer disposed on at least sidewalls of the variable resistance element, wherein the blocking layer may include a layer that is substantially free of nitrogen, oxygen or a combination thereof.
US11706996B2

A semiconductor device includes: a substrate comprising a magnetic tunneling junction (MTJ) region and a logic region; a first MTJ on the MTJ region; a first metal interconnection on the logic region; and a cap layer extending from a sidewall of the first MTJ to a sidewall of the first metal interconnection. Preferably, the cap layer on the MTJ region and the cap layer on the logic region comprise different thicknesses.
US11706993B2

A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) on a substrate; forming a first ultra low-k (ULK) dielectric layer on the first MTJ; performing a first etching process to remove part of the first ULK dielectric layer and forming a damaged layer on the first ULK dielectric layer; and forming a second ULK dielectric layer on the damaged layer.
US11706986B2

The present invention provides a thermoelectric material excellent in heat resistance with less degradation of thermoelectric characteristics even in a high temperature environment. The thermoelectric material comprises a compound represented by a chemical formula Mg2Si1-xSnx (0
US11706985B2

A thermoelectric conversion element includes a thermoelectric conversion material portion having a compound semiconductor composed of first base material element A and second base material element B and represented by Ax-cBy with value of x being smaller by c with respect to a compound AxBy according to a stoichiometric ratio, a first electrode disposed in contact with the thermoelectric conversion material portion, and a second electrode disposed in contact with the thermoelectric conversion material portion and apart from the first electrode. An A-B phase diagram includes a first region corresponding to low temperature phase, second region corresponding to high temperature phase, and third region corresponding to coexisting phase, sandwiched between the low temperature phase and the high temperature phase, in which the low and high temperature phases coexist. A temperature at a boundary between the first region and the third region changes monotonically with a change in c.
US11706982B2

The present invention relates to the field of display technologies, and particularly to a fused polycyclic compound, a preparation method and use thereof. The fused polycyclic compound provided in the present invention has a structure of General Formula IV. The structure of the compound has ambipolarity, and the HOMO level and the LUMO level of the host material are respectively located on different electron donating group and electron withdrawing group, such that the transport of charges and holes in the host material becomes more balanced, thereby expanding the area where holes and electrons are recombined in the light emitting layer, reducing the exciton concentration, preventing the triplet-triplet annihilation of the device, and improving the efficiency of the device.
US11706978B2

The present invention relates to organic light emitting elements, comprising thermally activated delayed fluorescence (TADF) emitters and/or hosts of formula which have a sufficiently small energy gap between S1 and T1 (ΔEST) to enable up-conversion of the triplet exciton from T1 to S1. The organic light emitting elements show high electroluminescent efficiency.
US11706975B2

Disclosed are a compound for an organic optoelectronic device represented by Chemical Formula 1, a composition for an organic optoelectronic device, an organic optoelectronic device including the same, and a display device. Details of Chemical Formula 1 are the same as defined in the specification.
US11706965B2

A pixel arrangement structure includes: first sub-pixels, second sub-pixels and third sub-pixels, all being not overlapped but being spaced apart. The third sub-pixels have a first symmetry axis and a second symmetry axis that are perpendicular to each other. The first symmetry axis extends through a geometric center of a respective first sub-pixel adjacent to a respective third sub-pixel of the plurality of third sub-pixels, intersects a first edge of the respective third sub-pixel at a first intersection point, and intersects a second edge of the adjacent respective first sub-pixel at a second intersection point. A distance between the first intersection point and the second intersection point is a minimum distance between the respective third sub-pixel and the respective first sub-pixel. The second symmetry axis is similarly configured with respect to a respective second sub-pixel and the respective third sub-pixel.
US11706956B2

A display device with a reduced area of dead spaces and a low defect occurrence rate includes a substrate including a display area and a peripheral area; and a first insulating layer disposed over the peripheral area and including a first side surface portion, a second side surface portion, and at least one recess portion. The first side surface portion includes a side surface aligned with a side surface of the substrate, and the second side surface portion includes a side surface aligned with the side surface of the substrate and is spaced apart from the first side surface portion. A first pad is disposed on the first insulating layer, extends to an edge of the substrate, fills the at least one recess portion, and includes a front end surface aligned with the side surface of the substrate.
US11706945B2

A display apparatus includes a substrate defining an opening area and including a display area and an intermediate area between the opening area and the display area; an inorganic insulating layer in the display area and the intermediate area; a pixel circuit in the display area; an organic insulating layer on the pixel circuit; a pixel electrode on the organic insulating layer, an intermediate layer on the pixel electrode, and an opposite electrode on the intermediate layer; a thin-film encapsulation layer on the opposite electrode and comprising a first inorganic encapsulation layer, a second inorganic encapsulation layer, and an organic encapsulation layer between the first and second inorganic encapsulation layer; and a partition wall on the organic insulating layer and including at least two dams, wherein the inorganic insulating layer is in contact with the thin-film encapsulation layer in an area between the partition wall and the opening area.
US11706944B2

A method of manufacturing a display device may include sequentially forming a first conductive layer, a second conductive layer including copper (Cu), a third conductive layer, and a fourth conductive layer on a substrate, patterning the first conductive layer, the second conductive layer, the third conductive layer, and the fourth conductive layer together to form a conductive pattern including a first layer, a second layer, a third layer, and a fourth layer sequentially on the substrate, removing the fourth layer of the conductive pattern, forming a protective layer covering at least a sidewall of the conductive layer on the substrate, and forming a display element on the protective layer.
US11706940B2

Provided a light emitting device including a reflective layer including a plurality of nanostructures that are periodically two-dimensionally arranged, a planarization layer disposed on the reflective layer, a first electrode disposed on the planarization layer, an organic emission layer disposed on the first electrode, and a second electrode disposed on the organic emission layer, wherein the planarization layer includes a conductive material that is transparent with respect to light emitted by the organic emission layer, and wherein the planarization layer is disposed on upper surfaces of the plurality of nanostructures such that an air gap is provided between adjacent nanostructures of the plurality of nanostructures.
US11706936B2

A light emitting device including a first electrode and a second electrode spaced from each other, and, a light emitting film between the first electrode and the second electrode, wherein the light emitting film has a first surface facing the second electrode and a second surface opposite thereto, the light emitting film includes a quantum dot layer including a plurality of quantum dots and a matrix including a metal chalcogenide, the plurality of quantum dots includes selenium, the matrix covers at least a portion of the quantum dot layer, the metal chalcogenide comprises zinc and sulfur, and in an X-ray photoelectron spectroscopic analysis of the first surface of the light emitting film, a mole ratio of zinc with respect to selenium is greater than or equal to about 2:1 and a mole ratio of sulfur with respect to selenium is greater than or equal to about 1.1:1.
US11706925B2

Device, systems, and structures include a stack of vertically-alternating tiers of materials arranged in one or more decks of tiers. A channel opening, in which a channel pillar may be formed, extends through the stack. The pillar includes a “shoulder portion” extending laterally into an “undercut portion” of the channel opening, which undercut portion is defined along at least a lower tier of at least one of the decks of the stack.
US11706911B2

The present disclosure relates to a semiconductor memory device and a method of fabricating the same, and the semiconductor memory device includes a substrate, an active structure and a shallow trench isolation. The active structure is disposed within the substrate and includes a first active region and a second active region. The first active region includes a plurality of active region units, and the second active region is disposed at an outer side of the first active region to directly connect to a portion of the active region units. The second active region includes a plurality of first openings disposed an edge of the second active region. The shallow trench isolation is disposed within the substrate, to surround the active structure.
US11706908B2

A switchable wire includes filaments, each of which includes a heat-activated material layer that may be indirectly heated to change its state between different states having different electrical conductivity. In an example embodiment the indirect heating may be electrically resistance heating by passing electrical current through an electrically-resistive core of the filament. The heat passing through an electrically-insulative coating around the core, and into a heat-activated material layer around the electrically-insulative coating. The heat-activated material may be a chalcogenide material that is shiftable between a crystalline electrically-conducting state and an amorphous electrically-insulating state. The state of the material may be controlled by controlling the heating profile through controlling heating in the core. Many such filaments may be twisted together to form a switchable wire. Such wires may be used in any of a variety of devices where switchable electrical conductivity is desired.
US11706890B2

A medical device includes a hybrid circuitry assembly and a core circuitry support structure. The core circuitry support structure includes a frame defining a cavity configured to receive at least a portion of the hybrid circuitry assembly. An outer surface of the frame is shaped to correspond to an inside surface of a core assembly housing configured to enclose the hybrid circuitry assembly and the core circuitry support structure.
US11706882B2

Disclosed are a display apparatus and a tiled display apparatus including the same, including a display panel and a support module configured to support the display panel, wherein the support module includes a body supporting the display panel, a plurality of support portions movably coupled to the body, a plurality of connection portions connected to the plurality of support portions, respectively, and a rotating portion connected to the plurality of connection portions and configured to move the plurality of support portions in an insertion direction toward an inside of the body or a protrusion direction toward an outside of the body. Since the display panel is easily attached to and detached from the frame, a time for replacement, repair, and installation work of the display panel may be reduced.
US11706877B2

A composite wiring substrate includes a first wiring substrate including a first connection terminal, a second wiring substrate including a second connection terminal facing the first connection terminal, and a joint material joining the first connection terminal and the second connection terminal. The first outline of the first connection terminal is inside the second outline of the second connection terminal in a plan view. The joint material includes a first portion formed of an intermetallic alloy of copper and tin, and contacting each of the first connection terminal and the second connection terminal, and a second portion formed of an alloy of tin and bismuth, and including a portion between the first outline and the second outline in the plan view. The second portion contains the bismuth at a higher concentration than in the eutectic composition of a tin-bismuth alloy, and is separated from the second connection terminal.
US11706873B2

A method for manufacturing a multilayer wiring substrate includes forming a resist layer having mask pattern, forming a conductor layer having conductor pattern using the resist layer, removing the resist layer, forming an insulating layer on the conductor layer such that the insulating layer is laminated on the conductor layer, forming a subsequent resist layer having mask pattern such that the subsequent resist layer is formed on the insulating layer, and forming a subsequent conductor layer having conductor pattern using the subsequent resist layer. The forming of the resist layer includes conducting first correction in which formation position of entire mask pattern of the resist layer is corrected with respect to reference position, and conducting second correction in which shape of the mask pattern of the resist layer is corrected with respect to reference shape, and the forming of the subsequent resist layer does not include conducting the second correction.
US11706864B1

The present disclosure generally pertains to systems and methods for verifying operation and configuration of a lighting network. In some embodiments, a site controller is configured to receive sensor data from a plurality of sensors and to transmit commands to nodes of a lighting network for controlling light sources based on the sensor data. The site controller is also configured to store a site plan including a listing of the nodes and, for each of the nodes, indicating a number of sensors to be coupled to the respective node. The site controller is further configured to detect the sensors coupled to the nodes based on the sensor data and to compare the detected sensors to the site plan for determining whether the detect sensors is consistent with the site plan. If not, the site controller is configured to provide an alert.
US11706863B2

An electronic device is configured to determine apart (161) of a light effect for a first period and determine a succeeding part (186) of the light effect for a second period succeeding the first period. The electronic device is further configured to determine a likelihood that a second original light command specifying a part (162) of a light effect for the second period will not arrive at its destination and transmit an original first light command or determine and transmit an alternative first light command in dependence on the likelihood and/or the determined succeeding part of the light effect. The original first light command specifies the part of the light effect and the alternative first light command is determined based on the part and the succeeding part of the light effect and specifies a portion of the light effect for both the first period and the second period.
US11706862B2

A lighting apparatus includes a main module and an extended module. The main module includes a power circuit, a light source, a first network interface and a controller. The power circuit is controlled by the controller to generate a driving current supplied to the light source by converting an external power source. The extended module includes a function circuit and a second network interface. The function circuit communicates with the controller via the second network interface and the first network interface to add an extended function for the controller to enhance controlling of the light source. When the extended module is detachable from the main module, the main module is operated independently without the extended function.
US11706859B2

An input device with a backlight function and a backlight color adjustment method are provided. The input device with the backlight function includes a casing, plural color light-emitting elements, a control module and a charge-coupled device. The control module provides electric power to at least two selected color light-emitting elements through a power supply circuit. By the control module, the chromaticity value of a mixed white light beam from the color light-emitting element is adjusted to be consistent with the chromaticity value of a white light beam, and the luminance value of the mixed white light beam from the color light-emitting element is adjusted to be consistent with the luminance value of the white light beam.
US11706852B2

Power amplifier electronics for controlling application of radio frequency (RF) energy generated using solid state electronic components may further be configured to control application of RF energy in cycles between high and low powers. The power amplifier electronics may include a semiconductor die on which one or more RF power transistors are fabricated, an output matching network configured to provide impedance matching between the semiconductor die and external components operably coupled to an output tab, and bonding ribbon bonded at terminal ends thereof to operably couple the one or more RF power transistors of the semiconductor die to the output matching network. The bonding ribbon may have a width of greater than about five times a thickness of the bonding ribbon.
US11706850B2

A method for regulating a temperature of a magnetron includes: determining an anode current flowing through the magnetron and an output power of a variable-frequency power supply, the output power being configured to drive the magnetron to operate; calculating an anode voltage of the magnetron according to the anode current of the magnetron and the output power of the variable-frequency power supply; calculating an anode temperature of the magnetron according to the anode voltage of the magnetron; and regulating the output power of the variable-frequency power supply according to the anode temperature of the magnetron.
US11706844B2

A cooktop includes a base and an electrically conductive coating applied to the lower surface of the base. The coating is composed of a paint containing electrically conductive particles dispersed in a silicone or polyester-silicone or epoxy-silicone resin. The conductive particles are selected from the group consisting of multi-wall or single-wall carbon nanotubes, graphene, copper metallic particles, nickel metallic particles, or combinations thereof.
US11706837B2

In the present invention, a user equipment (UE) receives an UL grant that can be used while the UE is not in RRC_CONNECTED state. If the UE receives a message indicating to leave RRC_CONNECTED state, the UE starts a time alignment timer (I-TAT) when the UE leaves RRC_CONNECTED state. The UE transmits UL data using the UL grant if the UL data becomes available for transmission when the UE is not in RRC_CONNECTED state and if the I-TAT is running.
US11706835B2

Systems and methods are provided herein for handling Quality of Service (QoS) mobility and dual connectivity. In some embodiments, a method of operation of a network node in a cellular communications network includes deciding to split an existing Protocol Data Unit (PDU) session that includes a current uplink tunnel information; and setting up resources for the split PDU session. In this way, it may be possible to support QoS mobility in the different tunnel during dual connectivity. In some embodiments, the network node is a Master Next Generation—Radio Access Network (NG-RAN) node, and setting up resources for the split PDU session includes sending an S-Node Addition/Modification Request including the current uplink tunnel information for the split PDU session to a Secondary NG-RAN node in the cellular communications network; and receiving a newly added additional downlink tunnel information from the Secondary NG-RAN node.
US11706834B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may perform radio link monitoring (RLM) reference signal measurements on a primary secondary cell (PSCell) while the UE is operating in a secondary cell group (SCG) deactivated state. The UE may perform beam failure detection (BFD) reference signal measurements while the UE is operating in the SCG deactivated state. The UE may transmit, to a master node associated with a master cell group (MCG), an SCG failure information message based at least in part on one of: a PSCell radio link failure (RLF) detection based at least in part on the RLM reference signal measurements, or a BFD based at least in part on the BFD reference signal measurements. Numerous other aspects are described.
US11706831B2

A wireless device (100) is configured for dual mode V2X communications over multiple short range radio interfaces. The wireless device (100) is configured to transmit ITS messages over a first short range radio interface configured to operate according to a first communication standard (e.g. PC5 or IEEE 802.11p), and to receive ITS messages over both the first short range radio interface and a second short radio interface configured to operate according to a second communication standard. Implementing the transmitter chain of only one technology, either PC5 or IEEE 802.11p, at each wireless device (100) reduces complexity and mitigates co-channel and adjacent channel interference that is caused by uncoordinated and concurrent transmissions of different technologies from the same wireless device. Implementing receiver chains for both PC5 and 802.11p allows the wireless device (100) to receive signals in the ITS frequency band regardless of which technology the transmitting device is using.
US11706827B2

Devices, methods, and systems for physical contact detection for device pairing are described herein. One device includes a mechanism configured to detect physical contact between the device and a wireless device, a memory, and a processor configured to execute executable instructions stored in the memory to perform a pairing of the wireless device and the device only upon the mechanism detecting the physical contact between the device and the wireless device.
US11706825B2

A method and apparatus of routing a call in a femtocell network are disclosed. In one example call routing method, a call is originated from the mobile station via a femtocell access point and the call is transmitted to a femtocell gateway, a mobile switching center and a carrier gateway server and onto an enterprise gateway server to obtain policy information. A routing policy is determined based on the obtained policy information and the call is routed to its destination based on the routing policy. The call may be routed via local media from a femtocell access point directly to the enterprise gateway server. The call routing procedures may implement the Iuh protocol and/or the session initiation protocol (SIP) for call signaling in the femtocell network. Call routing may be performed in a wireless cellular communications network or an enterprise network environment.
US11706820B2

A method, performed by a UE, for handling a two-step Random Access Channel (RACH) procedure, in a wireless communications network is provided. When a Random Access (RA) event is triggered the UE obtains a Physical Random Access Channel (PRACH) preamble corresponding to the RA event and/or a desired grant size, by randomly select a preamble mapping to a table entry providing a required size of a Physical Uplink Shared Channel (PUSCH) resource for the triggered RA event. The UE then obtains a grant from the PUSCH resource table based on the obtained PRACH preamble, which grant includes an indication of a PUSCH resource to use for a Msg 3 transmission in uplink.
US11706814B2

A communications device that, when in an inactive state, transmits a first signal comprising a random access preamble and a first portion of data to infrastructure equipment, receives a random access response message from the infrastructure equipment, and transmits a second signal comprising a second portion of the data to the infrastructure equipment.
US11706809B2

The implementations disclosed provide apparatus, systems, and methods for channel structure construction for a two-step random access channel (RACH) using a new radio (NR) user equipment (UE) wireless device. The wireless device includes one or more computer processors configured to generate a physical RACH (PRACH) preamble mapped to a physical uplink shared channel (PUSCH) resource unit. The PRACH preamble is associated with a preamble group indicating a configuration of the PUSCH. The preamble group has a size indicated by radio resource control (RRC) signaling performed by the wireless device. A message is encoded including the PRACH preamble and a payload carried by the PUSCH. The configuration of the PUSCH includes parameters for decoding the message. The wireless device couples communicatively to a base station using the PUSCH. The message is transmitted to the base station. The base station decodes the message based on the parameters of the PUSCH configuration.
US11706796B2

A method, a terminal device, and a base station for power control in random access procedure. The method implemented at a terminal device includes: obtaining at least one power control parameter to be used for a request message for a random access; and transmitting, to a base station, the request message for the random access. A power of the request message for the random access is controlled based on the at least one power control parameter. The request message comprises: a random access channel (RACH) preamble and a physical uplink shared channel (PUSCH). The power control may be achieved in a RACH procedure different with 4-step RACH procedure, such as in a 2-step RACH procedure.
US11706794B2

Systems, methods, and instrumentalities are disclosed herein associated with physical random access, e.g., for new radio (NR) implementations such as NR-unlicensed (NR-U). A wireless transmit/receive unit (WTRU) may switch a position of a PRACH occasion (RO) with another RO to reduce latency (e.g., so that a WTRU can transmit a preamble without performing a LBT operation). Systems, methods, and instrumentalities are disclosed for reserving a listen-before-talk (LBT) procedure gap at the beginning of a random access channel (RACH) occasion (RO) in New Radio (NR) unlicensed (NR-U) systems. The present systems, methods, and instrumentalities may (e.g., may also) be applied to consecutive ROs. This may include reserving a LBT gap for example, for a RO transmission (e.g., for each of the consecutive ROs). Low latency RACH for NR-U systems may be supported (e.g., mapping rules for the RO may be implemented).
US11706792B2

A device may receive a request to establish a communication session with a network. The request includes first bearer information regarding a bearer and first network slice information regarding a network slice of the network. The device may generate a first priority value, associated with the request, based on the first bearer information and the first network slice information. The device may obtain second bearer information regarding active bearers associated with existing communication sessions and second network slice information regarding one or more network slices, of the network, associated with the active bearers. The device may generate second priority values associated with the active bearers based on the second bearer information and the second network slice information. The device may compare the first priority value and the second priority values. The device may preempt one or more of the active bearers based on the comparison.
US11706789B2

A communication method and a related apparatus for data transmission in vehicle-to-everything (V2X) communication, the apparatus including at least one processor and a non-transitory computer-readable memory storing a program to be executed by the at least one processor, the program including instructions for obtaining a first parameter value of an uplink, obtaining a second parameter value of a sidelink, and transmitting, according to a comparison between the first parameter value and the second parameter value, at least one of an uplink media access control protocol data unit or a sidelink media access control protocol data unit, where the uplink is a wireless communications link from the apparatus to a network device, and where the sidelink is a wireless direct transmission link between the apparatus and another terminal device.
US11706783B2

The disclosure relates to methods, devices, and systems for wireless communications. A wireless communications system may support unicast and broadcast communications for different radio access technologies (RATs). To support the coexistence of different RATs, a user equipment (UE) may report, to a base station, a UE capability message containing a band combination including one or more bands for a first RAT (for example, New Radio (NR)) and one or more bands for a second RAT (for example, Long Term Evolution (LTE)) and an indication of a baseband budget for the second RAT for the band combination. In some implementations, the UE may transmit a broadcast interest indicator to the base station requesting a broadcast service. The base station may configure the UE with a carrier aggregation (CA) configuration based on the UE capabilities, such as the band combination and corresponding baseband budget for the second RAT, and the interest indicator.
US11706771B2

Methods, systems, and devices for wireless communication are described that may enable a user equipment (UE) to monitor a shared spectrum to receive control signaling and data transmissions associated with different transmission time intervals (TTIs). For example, a base station may communicate with a UE according to a first transmission mode during a first, shortened TTI. The base station may transmit a downlink control channel for a shortened TTI based on a subset of a number of blind decodes or control channel elements. Additionally, a downlink control channel for a shortened TTI may contain grants for multiple TTIs. In some cases, the base station may transmit a signaling to the UE via a reference signal, downlink control channel, or radio resource control which may indicate a change from the shortened-TTI transmission mode to a transmission mode with a TTI duration that is longer than the first, shortened TTI duration.
US11706764B2

Methods, systems, and devices for wireless communications are described. In some examples, a first UE may receive an indication of first resources from a second UE. In some examples, the second UE may be a UE configured to receive a transmission from a third UE over the first resources. In some such examples, the first UE may transmit, to a fourth UE, a sidelink transmission over available resources that exclude the first resources. Additionally, or alternatively, the second UE may be a UE that received sidelink control information from the third UE indicating the resources for transmission by the third UE to a fourth UE. In some such examples, the first UE may transmit, to the second UE, a sidelink transmission over available resources that exclude the first resources.
US11706754B2

A vehicle includes a processor configured to transmit a mmWave beacon signal during a probe phase of a first period; receive one or more mmWave beacon signals from one or more vehicles; generate a mmWave communication intention message for another period that is after the first period based on the received one or more mmWave beacon signals; and broadcast, during the first period, a packet including a mmWave transmission schedule for the another period generated based on the mmWave communication intention message.
US11706752B2

Systems and methods for implementing semi-persistent scheduling (SPS) transmission of periodic messages via one or more sidelinks are described. SPS for a sidelink groupcast may be activated and/or deactivated using SPS control signaling for the sidelink groupcast. SPS control signaling utilized for activating/deactivating SPS for a sidelink groupcast may include a SPS indicator (e.g., conveyed at least in part via SCI format 0-1 message), an activation/deactivation indicator (e.g., conveyed at least in part via SCI format 0-1 message and/or SCI format 0-2 message), and/or a configuration index (e.g., conveyed at least in part via SCI format 0-1 message and/or SCI format 0-2 message). Other aspects and features are also claimed and described.
US11706741B2

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive an indication of a configuration that may identify a set of time and frequency resources for transmission of sounding reference signals, the set of time and frequency resources including a plurality of subsets of time and frequency resources. Each subset of time and frequency resources of the plurality of subsets of time and frequency resources may be associated with a corresponding value of a plurality of values of a partial frequency parameter. The UE may receive control signaling indicating a value of the partial frequency parameter of the plurality of values. The UE may transmit a sounding reference signal on a subset of time and frequency resources of the plurality of subsets of time and frequency resources that corresponds to the value of the partial frequency parameter indicated by the received control signaling.
US11706736B2

According to certain embodiments, a method performed by a wireless device for paging occasion (PO) allocation is provided. The method includes determining that a PO configured for the wireless device in a Discontinuous Reception (DRX) cycle is problematic. A non-problematic PO is selected based on one or more criteria. One or more paging messages are monitored for during the selected non-problematic PO.
US11706735B2

According to one embodiment of the present disclosure, there is provided a method in which a terminal transmits position measurement information in a radio communication system. The method that is performed by the terminal includes triggering a beam positioning mechanism, receiving a beam positioning-related signal from a base station, measuring the beam positioning-related signal, acquiring position measurement information based on the measured beam positioning-related signal, and transmitting the acquired position measurement information to the base station. The position measurement information is acquired based on beamforming configuration.
US11706726B2

Methods, systems, and devices for dynamic monitoring modes for synchronization signal block (SSB) transmissions are described. A user equipment (UE) may monitor one or more first SSB transmission opportunities for SSB transmissions from a base station and determine an SSB failure rate. Based on the failure rate, the UE may select a mode for monitoring one or more second SSB transmission opportunities. For example, if the failure rate is greater than a threshold, the UE may select a first mode for monitoring a first quantity of the one or more second SSB transmission opportunities. Additionally, if the failure rate is less than the threshold, the UE may select a second mode for monitoring a second quantity different than the first quantity of the one or more second SSB transmission opportunities. The UE may monitor the one or more second SSB transmission opportunities according to the selected mode for monitoring.
US11706725B2

A method includes receiving a first plurality of symbols comprising complex portions. The method further includes applying conjugate symmetry to the first plurality of symbols, producing a second plurality of symbols comprising no complex portions. The method further includes transforming the second plurality of symbols using an inverse fast Fourier transform, producing a third plurality of symbols. The method further includes interpolating the third plurality of symbols, generating a short training field comprising at least one real portion of the third plurality of symbols, generating a long training field comprising at least one real portion of the third plurality of symbols, and transmitting the short training field and long training field in a WPAN.
US11706719B2

Modulating and optimizing operation parameters such as power usage of wireless networks include determining a baseline reference level for a network demand at a base station in a network during a first time interval. The transmission power of the base station corresponding to the baseline reference level is determined, and the network demand at the base station in the network is forecasted during a second time interval. A difference between the projected network demand and the baseline reference level at the second time is determined. The transmission power of the base station is adjusted by a predetermined increment during the second time interval based at least on the difference.
US11706715B2

Disclosed are a method and an apparatus for determining a time-frequency resource, a chip, and a computer program. The method includes: a terminal device acquires power-saving related configurations; the terminal device determines a time-frequency resource for receiving an energy-saving channel/signal according to the relationship between the power-saving related configurations or power-saving related configuration parameters and the time-frequency resource for the energy-saving channel/signal.
US11706714B2

The present disclosure provides a communication apparatus that comprises a receiver which, in operation, receives a wake-up radio (WUR) frame, during an on duration in a duty cycle, in a first channel assigned to the communication apparatus by an Access Point (AP), and receives a WUR Beacon frame in a second channel, a transmission of the WUR Beacon frame being scheduled at a target WUR beacon transmission time (TWBTT); and a processor which, in operation, operates the duty cycle, wherein, during a determined time from the TWBTT, any WUR frame is not transmitted in the first channel from the AP.
US11706711B2

A method for transmitting a physical layer protocol data unit (PPDU) and a device using the same are provided. The device receives a trigger frame for requesting a transmission of a high efficiency (HE) trigger-based (TB) PPDU and transmits the HE TB PPDU. A duration of the HE TB PPDU is calculated based on a duration of the trigger frame.
US11706703B2

In a method for configuring a Software Defined Radio (SDR) capable user equipment, the SDR capable user equipment wirelessly loads an SDR program from a radio access network. The SDR capable user equipment executes the loaded SDR program, the SDR program on execution configuring the SDR capable user equipment to support a desired wireless communication technology. The SDR capable user equipment loads the SDR program using a dedicated SDR configuration channel, the dedicated SDR configuration channel being disjoint with any communication channel defined by the desired wireless communication technology. The SDR capable user equipment scans a predetermined frequency spectrum searching a broadcasted beacon. The SDR capable user equipment receives the broadcasted beacon and tunes to the dedicated SDR configuration channel or a subchannel thereof pointed to by a pointer for loading the SDR program.
US11706700B2

Aspects of the present disclosure provide a method for wireless communications by a user equipment (UE). The method generally includes receiving radio resource control (RRC) signaling indicating a set of cells that support physical (PHY) layer or medium access control (MAC) layer mobility signaling, receiving at least one MAC control element (CE) indicating mobility information for the set of cells, and updating one or more features of the set of cells based on the MAC CE.
US11706699B2

Systems and methods are provided by which all APs in a particular deployment can be used to assist in the out-of-band discovery of 6 GHz radios by client devices. That is, a series of iterative operations can be performed to: (I) determine the state of 6 GHz radios in a zone/deployment area; (II) identify what radios can be considered near-neighbors to non-6 GHz radios for purposes of advertising one or more of the 6 GHz radios; (Ill) rank neighboring 6 GHz radios for a given non-6 GHz radio based on certain radio metrics; and (IV) ultimately determine those 6 GHz radios that can be advertised by the given non-6 GHz radio.
US11706691B2

A UE may receive, from at least one cell via at least one bit in a MIB or a SIB, a barring indication based on a supported network of the at least one cell and a supported network of the UE. The supported network of the at least one cell may correspond to a TN or an NTN, and the supported network of the UE may correspond to a TN or an NTN. The UE may skip, based on the received barring indication, a selection of the at least one cell for communication. Accordingly, the UE may not camp on the at least one cell. The barring indication for NTN-supporting UEs and for TN-supporting UEs may be separately indicated via the MIB or the SIB.
US11706690B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, an integrated access and backhaul (IAB) node may receive, from a first IAB donor centralized unit (CU) via a first parent distributed unit (DU), a first indication to establish a first connection with a second parent DU associated with a second IAB donor CU. The IAB node may establish the first connection with the second parent DU. The IAB node may establish a second connection with the first IAB donor CU via the second parent DU, the first connection and the second connection forming a target path between the IAB node and the first IAB donor CU. Numerous other aspects are provided.
US11706687B2

The present invention relates to an IPv6 wireless sensor network node mobility management method based on RPL routing protocol. The present invention achieves the following: first, placing an RSSI in an ACK frame so as to detect the mobile state of a node and improve the accuracy of mobile detection; second, on the premise of compatibility with an original RPL routing protocol, improving the options for DIS and DAO in selecting the optimal parent node and updating a routing table; and finally, designing a cache method to prevent messages sent to the mobile node from being lost in the process of moving, and designing a new 6LoWPAN header so as to complete message caching.
US11706686B2

A communication system includes a central cloud server to establish a primary communication path between a radio access network (RAN) node and one or more user equipment (UEs) via a first set of edge devices of a plurality of edge devices, where each edge device is configured as a mesh node of a mesh network. The central cloud server determines a plurality of secondary communication paths between the RAN node and the one or more UEs via different sets of edge devices. The central cloud server ranks each of the plurality of secondary communication paths in terms of one or more signal quality parameters and controls switching from the primary communication path to one or more secondary communication paths configured as backup communication paths within a threshold time to maintain a continuity in service to the one or more UEs for uplink and downlink communication.
US11706685B2

Systems, apparatuses, and methods are described for configuring route selection policies. A user device may send, to a computing device, a route selection policy request to update route selection policy rules for applications and/or services of the user device. The computing device may determine the route selection policy rules for the applications and/or services based on various criteria. The computing device may send the determined route selection policy rules to the user device. If the user device does not accept the determined route selection policy rules, the user device may send, to the computing device, a negotiation request to obtain other route selection policy rules for the applications and/or services.
US11706681B2

Apparatuses and methods supporting uplink transmissions are disclosed. A method includes receiving signaling including information indicating a primary cell and at least one non-primary cell, receiving a message with scheduling information indicating an allocation of uplink resources and a HARQ process ID, and transmitting to at least the one non-primary cell an uplink transmission using a HARQ process indicated by the HARQ process ID and the allocation of uplink resources. Another method includes transmitting signaling including information indicating a primary cell and at least one non-primary cell, transmitting a message with scheduling information indicating an allocation of uplink resources and a HARQ process ID to a wireless transmit/receive unit (WTRU), and receiving an uplink transmission using a HARQ process indicated by the HARQ process ID and the allocation of uplink resources on at least the one non-primary cell.
US11706678B2

A method for centralized device tracking includes: obtaining, at a first UE from multiple sources, first multi-source position information corresponding to a second UE; determining, based on the first multi-source position information, second multi-source position information corresponding to the second UE; identifying a third UE, separate from the first UE, to which the second multi-source position information is relevant; and sending migration information to the third UE, the migration information comprising an identifier of the second UE and comprising the first multi-source position information, or the second multi-source position information, or a combination thereof.
US11706677B2

A user equipment (UE) for handover processes between communication networks includes one or more processors, and one or more non-transitory computer-readable media storing instructions that when executed by the one or more processors, cause the UE to receive, by the UE, first diagnostic information, determine whether to perform a first handover from a first communication network to a second communication network based on a first set of thresholds, the first set of thresholds being based on the first diagnostic information, receive, by the UE, an update of the first diagnostic information, and determine whether to perform a second handover from the first communication network to the second communication network based on an updated first set of thresholds, the updated first set of thresholds being based on the updated first diagnostic information.
US11706676B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless node may receive an indication of a plurality of sets of reference signal identifiers, wherein each set of reference signal identifiers of the plurality of sets of reference signal identifiers identifies reference signals of candidate neighbor nodes associated with the set, and wherein each candidate neighbor node associated with the set is in a same operating mode, and transmit a measurement report based at least in part on measuring one or more reference signals identified in the plurality of sets of reference signal identifiers. Numerous other aspects are provided.
US11706675B2

Methods and apparatus, including computer program products, are provided for handovers including fallbacks. In some example embodiments, there is provided an apparatus comprising at least one processor and at least one memory including program code which when executed causes the apparatus to at least: receive, during creation or modification of a bearer, a message including a handover threshold based at least in part on a type of codec for the bearer; receive, from a user equipment, a measurement report providing an indication of a condition of the bearer and/or perform a measurement, by the base station, providing the indication of the condition of the bearer; determine, based at least on the handover threshold, whether to initiate a handover. Related apparatus, systems, methods, and articles are also described.
US11706665B2

A method of enhanced error handling for 5G QoS operations is proposed. A PDU session defines the association between the UE and the data network that provides a PDU connectivity service. Each PDU session is identified by a PDU session ID, and may include multiple QoS flows and QoS rules. Within a PDU session, there should be one and only one default QoS rule. The default QoS rule indication (DQR) and the QoS flow identifier (QFI) of a signaled QoS rule should not be changed. Two new 5G session management (5GSM) causes are defined: a semantic error in the QoS operation (cause value #83) and a syntactic error (cause value #84) in the QoS operation. The UE should check the QoS rule provided in a PDU session modification command message for different types of QoS rule errors.
US11706664B2

Provided is a path control method of controlling a path of communication in a network including a high priority device dealing with high priority traffic, a high priority control device communicating with the high priority device through a plurality of signal transfer devices transferring signals by periodically repeating a high priority signal transmissible period in which high priority traffic is transmissible and a low priority signal transmissible period in which low priority traffic is transmissible, a low priority device dealing with the low priority traffic, and a low priority control device communicating with the low priority device through the plurality of signal transfer devices, the path control method including calculating a low priority signal transmissible period in each of paths between the low priority device and the low priority control device, and performing setting for switching the path between the low priority device and the low priority control device so that the low priority traffic is transmitted in any one of the calculated low priority signal transmissible periods.
US11706661B2

A wireless communication device according to an embodiment includes one or more hardware processors. The one or more hardware processors: collect forwarding load information about wireless communications in a wireless multi-hop network; determine, based on the forwarding load information, a degree of forwarding priority for a packet corresponding to a forwarding determination target; perform a forwarding control such that the packet corresponding to the forwarding determination target is forwarded earlier as the degree of forwarding priority is higher; and, when the packet corresponding to the forwarding determination target is forwarded, transmit the packet corresponding to the forwarding determination target by multi-cast communications or broadcast communications.
US11706653B2

Some of the present implementations provide a method for a first user equipment (UE) to deliver a sidelink measurement report to a second UE. The method receives sidelink measurement configuration through a PC5 radio resource control (RRC) connection between the first and second UEs. The method then generates the sidelink measurement report by monitoring at least one target resource pool allocated to the first UE via the sidelink measurement configuration and transmits the sidelink measurement report to the second UE through the PC5 RRC connection between the first and second UEs. The at least one target resource pool is associated with a first radio access technology (RAT) and the PC5 RRC connection between the first and second UEs is associated with a second RAT.
US11706637B2

A high frequency data network access system leverages commodity WiFi chipsets and specifically multi spatial stream (e.g., 802.11 ac) chipsets in combination with electrically steered patch array antenna systems at the subscriber nodes. In addition, for thermal control, the high frequency components are mounted to a main body that includes a heat sink and a chimney. These components are also separated from components operating at baseband to avoid interference.
US11706619B2

Presented herein are techniques to facilitate fast roaming between a mobile network operator-public (MNO-public) wireless wide area (WWA) access network and an enterprise private WWA access network. In one example, a method is provided that may include generating, by an authentication node, authentication material for a user equipment (UE) based on the UE being connected to a public WWA access network, wherein the public WWA access network is associated with a mobile network operator, and the authentication node and the UE are associated with an enterprise entity; obtaining, by the authentication node, an indication that the UE is attempting to access a private WWA access network associated with the enterprise entity; and providing, by the authentication node, the authentication material for the UE, wherein the authentication material facilitates connection establishment between the UE and the private WWA access network.
US11706609B2

Apparatus and methods to transfer user preferences for cellular wireless service associated credentials transferred from a source device to a target device. Transfer of credentials can include physically moving a physical subscriber identity module (SIM) card between devices, transfer of cellular wireless service from a first SIM card at the source device to a second SIM card at the target device, and/or transfer of cellular wireless services for one or more electronic SIMs (eSIMs) from the source device to the target device. Preferences associated with some or all of the transferred SIMs/eSIMs can be applied at the target device when certain matching criteria are satisfied. Exemplary matching criteria include matching identifiers, such as integrated circuit card identifier (ICCID) values, mobile station international subscriber directory number (MSISDN) values, and/or mappings thereof. Transfer of preferences can occur via a local peer-to-peer connection, a secure cloud-based service, and/or a backup and restore process.
US11706606B2

Controlling Network Repository Function (NRF) during discovery within a Fifth Generation (5G) network is described. In an example, the NRF can receive, from a Network Function (NF) consumer associated with the 5G network, a request for information associated with a NF producer type. The NRF can receive, from one or more NF producers associated with the NF producer type, indications of the NF producers and the NRF can generate a list of NF producers based at least in part on the indications. The NRF can select, based at least in part on a configurable parameter, a subset of the list of NF producers and send, responsive to receiving the request, the subset of the list of NF producers to the NF consumer.
US11706602B2

A wireless communication system includes a base station and direct wave communication stations that communicate with the base station. At least one of the base station and the direct wave communication stations includes a number-of-bands switching unit that switches, on the basis of a communication state, a number of bands for direct wave communication, by dividing a band for direct wave communication. One of the plurality of direct wave communication stations receives a narrowband carrier in the divided band.
US11706598B2

A network node is configured to initiate a first authentication and key establishment procedure with a machine to machine (M2M) device. The network node is configured to determine a key agreement between the network node and the M2M device using the first authentication and key establishment procedure. The network node is configured to initiate a second authentication and key establishment procedure with an M2M server. The network node is configured to receive a request from the M2M server for the key agreement to be used to communicate with the M2M device using the second authentication and key establishment procedure. The network node is configured to send the key agreement to the M2M server using the second authentication and key establishment procedure.
US11706576B2

A method includes wirelessly receiving audio content via a first transceiver included in a housing of a first device and producing a first audible signal from the audio content via a speaker included in the housing of the first device. The audio content is wirelessly transmitted via the first transceiver to a second transceiver integrated within a first remote speaker. A second audible signal is produced from the audio content via the first remote speaker. The method also includes wirelessly relaying the audio content via the second transceiver to a third transceiver integrated within a second remote speaker and producing a third audible signal from the audio content via the second remote speaker. The second remote speaker is located outside of the transmission range of the first transceiver.
US11706574B2

A speaker comprises a housing, a transducer residing inside the housing, and at least one sound guiding hole located on the housing. The transducer generates vibrations. The vibrations produce a sound wave inside the housing and cause a leaked sound wave spreading outside the housing from a portion of the housing. The at least one sound guiding hole guides the sound wave inside the housing through the at least one sound guiding hole to an outside of the housing. The guided sound wave interferes with the leaked sound wave in a target region. The interference at a specific frequency relates to a distance between the at least one sound guiding hole and the portion of the housing.
US11706573B2

In one embodiment, the present invention is directed to a method of transmitting information from an ear tip to a contact hearing device, the method comprising the steps of: exciting a transmit coil, the transmit coil being positioned in the ear tip, wherein the transmit coil is wound on a core, the core including a ferromagnetic material; radiating an electromagnetic field from the first coil through the ear canal of a user; receiving the radiated electromagnetic field at a receive coil, the receive coil being positioned on a contact hearing device, the contact hearing device including a receive coil without a ferrite core; and transmitting the information from the transmit coil to the receive coil using, for example, near-field radiation.
US11706572B2

A method including obtaining data based on a current and/or anticipated future state of a hearing prosthesis and adjusting a set gain margin of the hearing prosthesis based on the current or anticipated future state of the hearing prosthesis.
US11706568B2

Devices, systems and processes for providing an adaptive audio environment are disclosed. For an embodiment, a system may include a wearable device and a hub. The hub may include an interface module configured to communicatively couple the wearable device and the hub and a processor, configured to execute non-transient computer executable instructions for a machine learning engine configured to apply a first machine learning process to at least one data packet received from the wearable device and output an action-reaction data set and for a sounds engine configured to apply a sound adapting process to the action-reaction data set and provide audio output data to the wearable device via the interface module.
US11706565B2

An apparatus for amplifying an audio source includes a speaker and a chip. The chip includes a processor configured to generate a signal and an amplifier element configured to amplify the signal into an amplified signal. The chip further includes a current monitor configured to monitor the current of the amplified signal prior to the amplified signal being output from the chip to the speaker and a voltage monitor configured to monitor the voltage of the amplified signal prior to the amplified signal being output from the chip to the speaker. The processor of the chip is configured to control a power of the amplified signal output from the chip to the speaker based at least on the current and the voltage.
US11706564B2

Disclosed are methods and systems which convert a multi-microphone input signal to a multichannel output signal making use of a time- and frequency-varying matrix. For each time and frequency tile, the matrix is derived as a function of a dominant direction of arrival and a steering strength parameter. Likewise, the dominant direction and steering strength parameter are derived from characteristics of the multi-microphone signals, where those characteristics include values representative of the inter-channel amplitude and group-delay differences.
US11706556B2

The present disclosure provides an acoustic output apparatus including one or more status sensors, at least one low-frequency acoustic driver, at least one high-frequency acoustic driver, at least two first sound guiding holes, and at least two second sound guiding holes. The status sensors may detect status information of a user. The low-frequency acoustic driver may generate at least one first sound, a frequency of which is within a first frequency range. The high-frequency acoustic driver may generate at least one second sound, a frequency of which is within a second frequency range including at least one frequency exceeding the first frequency range. The first and second sound guiding holes may output the first and second spatial sound, respectively. The first and second sound may be generated based on the status information, and may simulate a target sound coming from at least one virtual direction with respect to the user.
US11706554B2

An earphone comprising a rear chamber and a vent structure. The vent structure comprises a longitudinal recess in the housing wall, which recess is defined by a bottom wall and recess walls connecting the bottom wall and the housing wall, a recess opening in the recess, which recess opening connects the recess and the rear chamber, a mesh device arranged parallel with the bottom wall, whereby a longitudinal recess cavity is provided between the bottom wall and the mesh structure. The invention also relates to the manufacturing such an earphone.
US11706547B2

An optical device may include a communication interface and processing logic configured to receive a broadcast contention-based allocation from an optical line terminal (OLT), wherein the contention-based allocation is associated with activation of the optical device in an optical network. The processing logic may also be configured to transmit a message in response to the contention-based allocation, wherein the message includes information identifying the optical device and receive, from the OLT, an assignment message or a feedback message in response to the transmitted message. The processing logic may be further configured to execute a retransmission procedure based on the assignment or feedback message indicating that a collision occurred.
US11706537B2

An image sensor includes a plurality of pixels that is arranged in a matrix and each of which outputs a signal in response to incident light, wherein readout of data can be performed with respect to the plurality of pixels, and simultaneous readout of data of a plurality of columns of pixels can be performed, and at least one pixel of the plurality of columns of pixels to be read simultaneously can be read for phase detection with respect to each of divided sub-pixels. The image sensor is configured to, with n rows as a readout unit where n is an integer of 2 or more, perform readout for at least one sub-pixel of at least one pixel in one readout cycle within the readout unit, perform readout for each pixel including phase detection readout for the other sub-pixel of the at least one pixel in which the at least one sub-pixel has been read in the one readout cycle, in another readout cycle within the readout unit, and end the readout for the readout unit with the n+1 readout cycles.
US11706535B2

An image capture device includes a plurality of independently formed camera channels. Each of the plurality of independently formed camera channels includes a respective lens that receives incident light and transmits the incident light to a respective sensor without transmitting the incident light to respective sensor of other camera channels within the plurality of independently formed camera channels. Further, a processor that is communicatively coupled to the respective sensor of each of the plurality of independently formed camera channels. The processor is configured to control an integration time of the respective sensor of each of the plurality of independently formed camera channels individually with the receive respective images from the respective sensor of each of the plurality of independently formed camera channels, and form a combined image by combing each of the respective images.
US11706525B2

An image sensor including a semiconductor substrate, a plurality of color filters, a plurality of first lenses and a second lens is provided. The semiconductor substrate includes a plurality of sensing pixels arranged in array, and each of the plurality of sensing pixels respectively includes a plurality of image sensing units and a plurality of phase detection units. The color filters at least cover the plurality of image sensing units. The first lenses are disposed on the plurality of color filters. Each of the plurality of first lenses respectively covers one of the plurality of image sensing units. The second lens is disposed on the plurality of color filters and the second lens covers the plurality of phase detection units.
US11706521B2

Media user interfaces are described, including user interfaces for accessing media controls or settings (e.g., accessing controls and/or settings to capture photos and/or videos to capture videos).
US11706510B2

A camera module includes a lens; an image sensor disposed on a substrate and converting an optical signal refracted by the lens into an electrical signal, an adhesive member disposed between the substrate and the image sensor to fix the image sensor to the substrate, and a support member disposed between the substrate and the image sensor configured to maintain a constant distance between the lens and the image sensor even at a time of shrinkage-deformation of the adhesive member.
US11706509B2

An electronic system including a camera module comprises a camera module on a metal plate, a metal flange surrounding the camera module, a metal frame connected to the metal flange, and a first adhesion member between the metal flange and the metal plate. The camera module includes a substrate including a cavity, an image sensor in the cavity, and a lens assembly on the image sensor. An area of the metal plate is greater than that of the substrate, from a plan view. The metal plate includes a first part overlapping the substrate from the plan view, and a second part not overlapping the substrate from the plan view. The second part corresponds to an edge portion of the metal plate. The image sensor contacts the metal plate through an adhesive material. A lower portion of the metal flange and the second part of the metal plate contact the first adhesion member.
US11706508B2

The embodiments of the present application relates to a camera, comprising a first housing, a stitching lens mechanism, and a driving assembly. The stitching lens mechanism is mounted in the first housing, and the stitching lens mechanism comprises at least two first assemblies, the first lens assembly comprises a first lens, a first included angle is formed between at least two first lenses. A driving assembly is connected to the first lens assembly through a rotating assembly. At least two first lenses are distributed in a first plane, the first housing is rotatably arranged in a second plane, and the second plane is perpendicular to the first plane. Each of the first lens assemblies takes pictures in different orientations for the same scene, so that the imaging field of view is larger. So that the first housing can rotate under the drive of the driving assembly, that is, the stitching lens mechanism can rotate. Compared with the existing stitching camera with a fixed structure, the imaging field of view of the camera of the present application is larger. That is, the camera of the present application can further expand the range of the imaging field of view compared to the existing camera.
US11706506B2

Provided is an imaging apparatus that captures a multispectral image having a good image quality. An imaging apparatus (1) includes an imaging optical system (10) that includes a pupil region which is split into a plurality of regions including a first pupil region and a second pupil region different from the first pupil region, and a polarization filter which polarizes light beams passing through the first pupil region and the second pupil region in directions different from each other, an imaging element (100) that includes a first pixel which receives the light beam passing through the first pupil region and a second pixel which receives the light beam passing through the second pupil region, and a signal processing unit (200) that processes signals output from the imaging element (100), and outputs at least first image data consisting of an output signal of the first pixel and second image data consisting of an output signal of the second pixel. In the imaging optical system (10), wavelengths of the light beams passing through the first pupil region and the second pupil region are different from each other, and aberration characteristics of regions corresponding to the first pupil region and the second pupil region are different from each other.
US11706503B2

The inventive concept relates to a method for producing a multi-reactive video and providing a multi-reactive video service, and a program using the same. It is possible to grasp a user's reaction to a video by recording manipulation details for a specific user's multi-reactive video. For example, it is possible to grasp the object of interest and the degree of interest of a user and to grasp a user interest in the user, by grasping the number of touch manipulations to the user's multi-reactive video, a frame in which a touch manipulation has been performed, and an object in the frame, or the like.
US11706491B2

Systems and methods are described for selecting content item identifiers for display. The system may identify a set of content items that are likely to be requested in the future based on a history of content item requests. The system then selects a first plurality of content categories using a category selection neural net and selects a first set of recommended content items for the first plurality of content categories. The system increases a reward score for the first plurality of content categories based on receiving a request for a content item that is included in the first set of recommended content items. The system also decreases the reward score for the first plurality of content categories based on determining that the requested content item is included in the set of content items that are likely to be requested in the future. The neural net is trained based on the reward score of the first plurality of content categories to reinforce reward score maximization. The trained neural net is the used to select content items for display.
US11706490B2

An example to predict demographics for impressions includes a prediction manager to: determine that first demographic data corresponding to a first database proprietor subscriber does not match second demographic data corresponding to a media delivery device, both the first and second demographic data corresponding to an impression; obtain third demographic data corresponding to an Internet protocol address, the third demographic data obtained from a second database proprietor; and generate matched demographic data based on comparing the third demographic data to the first demographic data; and a modeler to generate a prediction model based on the matched demographic data, the prediction model to predict fourth demographic data for the impression.
US11706486B2

The present disclosure relates to reducing or preventing ad fatigue in a user by determining the preference of a user to an ad, in particular user preference for parameters such as video track, audio track, dialogue or tone. The disclosure also relates to the provision of a timer that prevents an ad being shown repeatedly within a predetermined time frame.
US11706481B2

A mobile device responds in real time to media content presented on a media device, such as a television. The mobile device captures temporal fragments of audio-video content on its microphone, camera, or both and generates corresponding audio-video query fingerprints. The query fingerprints are transmitted to a search server located remotely or used with a search function on the mobile device for content search and identification. Audio features are extracted and audio signal global onset detection is used for input audio frame alignment. Additional audio feature signatures are generated from local audio frame onsets, audio frame frequency domain entropy, and maximum change in the spectral coefficients. Video frames are analyzed to find a television screen in the frames, and a detected active television quadrilateral is used to generate video fingerprints to be combined with audio fingerprints for more reliable content identification.
US11706480B2

A computer implemented method that includes receiving first user usage data and second user usage data indicative of user usage during consumption of a first content and of a second content, respectively. The method includes determining a first user usage pattern for the first content and a second user usage pattern for the second content based on the first user usage data and on the second user usage data, respectively. The method determines potential content overlap between the first content and the second content based on a comparison of the first usage pattern and the second usage pattern and performs an optimization operation based on the potential content overlap.
US11706469B2

Systems and methods are described herein for streaming during unavailability of a content server. Upon determining that there are conditions indicating buffering issues during delivery of a media asset, a server determines a first group of devices suitable for receiving the media asset from the server and sharing the media asset on a peer-to-peer network. Then, the server determines a second group of devices suitable for receiving the media asset on a peer-to-peer network from a first group device. The server then determines groupings within which to share and receive the media asset. Next, the server transmits instructions to the devices in the first group to maintain in buffer and share certain portions of the media asset with the second group devices within their grouping. Finally, the server updates information detailing the media asset portions the devices are maintaining in buffer and sharing.
US11706465B2

An Event Streams ‘event’ which contains information about ads is sent via ATSC 3.0 to a receiver player along with an xlinkResolution signal. This information includes but is not limited to time stamps for when the ads will start and stop. When this xlinkResolution is sent to the receiver player, the receiver player sends a notification to a broadcaster app containing the information about start and stop time for presenting the ad. Using this information, the broadcaster app updates itself so that, for example, the broadcaster app can present a message on a user interface regarding the subject of the ad, or present content related to but different from the ad along with the ad itself.
US11706464B2

A media system includes a plurality of set-top boxes coupled to a coax network and a controller. The controller displays a first passkey to a user in response to receiving a request from the user to activate playback of a media content on a particular set-top box. The set-top box receives the first passkey from the user and determines whether the user is authorized to activate playback of the media content by comparing the first passkey received from the user with a second passkey obtained from a passkey module on the set-top box. When the user is determined by the set-top box to be authorized to activate playback of the media content, the set-top box determines a radio frequency channel of the coax network according to the first passkey received from the user and begins playback of the media content received on the radio frequency channel on a display device.
US11706462B2

A method of video processing includes determining, for a conversion between a current block of a video and a bitstream representation of the video using a coding tool that accesses samples outside of the current block, that neighboring samples used for the conversion are unavailable. Samples that are located across a boundary of a video unit of the video are considered as unavailable samples. The method also includes performing, based on the determining, the conversion by padding samples in place of the neighboring samples that are unavailable. The padding samples are determined using samples that are restricted to be within a current processing unit associated with the current block.
US11706461B2

Aspects of the disclosure provide methods and apparatus for video decoding. Processing circuitry of the apparatus decodes coded information for a reconstructed sample of a current component in a current picture from a coded video bitstream. The coded information indicates a sample offset filter to be applied to the reconstructed sample. A filter shape of the sample offset filter is one of a plurality of filter shapes. Each of the plurality of filter shapes includes first reconstructed samples of a first component in the current picture. A filtered sample value of the reconstructed sample is determined based on the first reconstructed samples in the filter shape. The sample offset filter is an in-loop filter by which the output value is applied to the reconstructed sample as an offset to filter out coding artifacts while retaining details of the current component in the current picture.
US11706459B2

A method of video decoding performed in a video decoder is disclosed. A syntax element can be received from a bitstream of a coded video that indicates whether a sequence of pictures are monochrome or include three color components that are coded separately. By inferring a value of a syntax element, a coding tool can be disabled when the syntax element indicates that the sequence of pictures are monochrome or include three color components that are coded separately. The coding tool uses multiple color components of a picture as input or depends on a chroma component of a picture. Examples of the disabled coding tools can include joint coding of chroma residuals, active color transform (ACT), or block-based delta pulse code modulation (BDPCM) for chroma component.
US11706453B2

A method for encoding a picture of a video sequence in a bit stream that constrains slice header processing overhead is provided. The method includes computing a maximum slice rate for the video sequence, computing a maximum number of slices for the picture based on the maximum slice rate, and encoding the picture wherein a number of slices used to encode the picture is enforced to be no more than the maximum number of slices.
US11706452B2

An image decoding device (31) includes a transform coefficient decoding unit (311) configured to decode a transform coefficient for a transform tree included in a coding unit. In the transform tree, the transform coefficient decoding unit splits a transform unit corresponding to luminance and then decodes the transform coefficient related to the luminance, and does not split the transform unit corresponding to chrominance and decodes the transform coefficient related to the chrominance.
US11706432B2

Provided is an image decoding method including determining a predicted quantization parameter of a current quantization group determined according to at least one of block split information and block size information, determining a difference quantization parameter of the current quantization group, determining a quantization parameter of the current quantization group, based on the predicted quantization parameter and the difference quantization parameter of the current quantization group, and inverse quantizing a current block included in the current quantization group, according to the quantization parameter of the current quantization group.
US11706431B2

A method of decoding may comprise: receiving a bitstream comprising compressed video/image data; parsing or deriving, from the bitstream, an output layer set mode indicator in a video parameter set (VPS); identifying output layer set signaling based on the output layer set mode indicator; identifying one or more picture output layers based on the identified output layer set signaling; and decoding the identified one or more picture output layers.
US11706430B2

Disclosed decoding method of the intra prediction mode comprises the steps of: determining whether an intra prediction mode of a present prediction unit is the same as a first candidate intra prediction mode or as a second candidate intra prediction mode on the basis of 1-bit information; and determining, among said first candidate intra prediction mode and said second candidate intra prediction mode, which candidate intra prediction mode is the same as the intra prediction mode of said present prediction unit on the basis of additional 1-bit information, if the intra prediction mode of the present prediction unit is the same as at least either the first candidate intra prediction mode or the second candidate intra prediction mode, and decoding the intra prediction mode of the present prediction unit.
US11706428B2

A method of decoding an encoded video bitstream using at least one processor includes obtaining a video coding layer (VCL) network abstraction layer (NAL) unit; determining whether the VCL NAL unit is a first VCL NAL unit of a picture unit (PU) containing the VCL NAL unit; based on determining that the VCL NAL unit is the first VCL NAL unit of the PU, determining whether the VCL NAL unit is a first VCL NAL unit of an access unit (AU) containing the PU; and based on determining that the VCL NAL unit is the first VCL NAL unit of the AU, decoding the AU based on the VCL NAL unit.
US11706420B2

The present invention relates to an entropy decoding method which includes: generating context related to a bin that forms a codeword of a syntax element; and performing arithmetic decoding of the bin based on the context.
US11706419B2

A method for decoding an image by a decoding device according to the present disclosure comprises the steps of: receiving a bit stream including residual information; deriving a quantized conversion factor of a current block on the basis of the residual information included in the bit stream; deriving a residual sample of the current block on the basis of the quantized conversion factor; and generating a reconstructed picture on the basis of the residual sample of the current block.
US11706398B2

A method of coding implemented by a video encoder. The method includes encoding a representation of video data into a bitstream, the bitstream being prohibited from including a fisheye supplemental enhancement information (SEI) message and one of a projection indication SEI message and a frame packing indication SEI message that both apply to any particular coded picture in the bitstream; and transmitting the bitstream to the video decoder.
US11706391B1

In one embodiment, a device obtains sensor data from one or more sensors worn by a first responder. The device analyzes the sensor data to identify a position of a person with whom the first responder is interacting. The device determines that a policy violation has occurred based in part on the position of the person. The device provides an alert that indicates the policy violation.
US11706387B2

One example method includes receiving, by a video conference provider, an indication of a meeting type of a video conference; obtaining, by the video conference provider, multimedia content associated with the meeting type; receiving a request from a client device to join a main meeting of the video conference; connecting the client device to a waiting room associated with the video conference; and providing the multimedia content to the client device in the waiting room.
US11706379B2

In an X-ray imaging apparatus (100), an image processor (5b) is configured to apply a super-resolution process to a first region (A1) in each of acquired images (Ia), the first region including a subject (S), and to increase a number of pixels according to an increase in resolution in the first region by application of the super-resolution process thereto by a simpler process than the super-resolution process with respect to a second region (A2) other than the first region in each of the acquired images.
US11706374B2

The techniques described herein relate to methods, apparatus, and computer readable media configured to access multimedia data comprising a hierarchical track structure comprising at least a first track at a first level of the hierarchical track structure comprising first media data, wherein the first media data comprises a first sequence of video media units, and a second track at a second level in the hierarchical track structure different than the first level of the first track, the second track comprising metadata specifying a re-timing derivation operation. Output video media units are generated according to the second track, comprising performing the re-timing derivation operation on the first sequence of video media units to modify a timing of the first sequence of video media units by removing one or more video media units associated with the re-timing derivation operation and/or shifting timing information of the first sequence of video media units.
US11706364B2

A signal processing device (10) uses first characteristic data detected from a sheet-like detection target by a first detection element (1) and second characteristic data detected from the detection target by a second detection element (2) and having (i) a characteristic that is different from a characteristic of the first characteristic data and (ii) a correlation with the first characteristic data. The signal processing device (10) includes an evaluation value generator (3) that generates, by using the correlation with the second characteristic data, an evaluation value determining whether the first characteristic data includes an unnecessary portion, and a correction amount determiner (4) that determines, by using the evaluation value, for correction of data determined by the evaluation value generator (3) to be the unnecessary portion, a correction amount for the first characteristic data.
US11706359B2

A print apparatus registers information of the print apparatus in a server via an external access point based on an instruction provided via an operation screen of the print apparatus, obtains print data when an audio control device receives a print instruction by audio so that the server generates the print data, and executes a print process based on the obtained print data.
US11706354B2

An information processing device for a management system in which a management device and the information processing device are configured to communicate with a storage device. The information processing device comprising a controller that is configured to download, from the storage device, an instruction template including a plurality of pieces of processing instruction information for instructing a plurality of pieces of processing to be executed by the information processing device, create an update template in which each of the plurality of pieces of processing instruction information in the instruction template is replaced with a corresponding piece of a plurality of pieces of processing notification information to be notified to the management device and upload the update template to the storage device.
US11706349B2

In one embodiment, the method of processing telephony sessions includes: communicating with an application server using an application layer protocol; processing telephony instructions with a call router; and creating call router resources accessible through a call router Application Programming Interface (API). In another embodiment, the system for processing telephony sessions includes: a call router, a URI for an application server, a telephony instruction executed by the call router, and a call router API resource.
US11706344B2

Techniques described herein relate to representative monitoring in a contact center environment. Data associated with a customer interaction, including content of the interaction and video of a representative display during processing associated with the interaction, are presented to an administrator in real time or near real time for monitoring during an interaction. In some examples, a contact center server may receive an event notification when a live contact begins, and may generate data files associated with the live contact to allow the administrator to monitor the contact. In some instances, the contact center server may continue to generate data after conclusion of the live contact, to allow the administrator to monitor and guide post-contact processing performed by the representative. The contact center server also may allow administrators to select live contacts for monitoring and/or receive alerts when pre-selected representatives commence live contacts that can be monitored.
US11706336B2

Methods and apparatuses for managing spoofed calls to a mobile device are described, in which the mobile device receives a call transmitted over a cellular or mobile network. The call may include a set of information associated with the network, such as a geological location of a device that generated the call, a hardware device identifier corresponding to the device, an internet protocol (IP) address associated with the device, or a combination thereof. The mobile device may determine whether the call is spoofed or genuine based on the set of information. Subsequently, the mobile device may assist a user of the mobile device to manage the call, such as blocking the call from reaching the user, informing the user that the call is spoofed, facilitating the user to report the call as spoofed to an authority and/or a service provider of the network.
US11706332B2

Systems, methods, and computer-readable media for providing smart notifications during voice call transitions from hold status to active status are described. An example method can include establishing a call between an endpoint and a remote device; after a determination that the call was placed on hold by the remote device, monitoring, by the endpoint, the call for an indication of a call resume transition, the indication of the call resume transition including at least one of a particular keyword transmitted by the remote device, an active speaker at the remote device, and a dual-tone multi-frequency signaling (DTMF) input from the remote device; detecting, by the endpoint, the indication of the call resume transition; and in response to detecting the indication of the call resume transition, generating, by the endpoint, a notification indicating that the hold has ended and the call has resumed.
US11706308B2

Systems, devices, and methods for automating network account transfers based on predicted inactivity are disclosed. In one embodiment, the system comprises a mail server providing access to an email account of a user; a social graph monitor configured to: periodically query, over a network, a social graph associated with the user to retrieve at least one social network feed associated with the user, calculate a sentiment score for the social network feed based on parsing the social network feed using a natural language parser, and determining that a transfer condition has occurred if the sentiment score exceeds a pre-defined sentiment score threshold; and a condition processor configured to: transmit, via the mail server, a password reset request to a network application associated with the transfer condition, intercept an email from the network application, via the mail server, transmitted in response to the password reset request, forward, via the mail server, the email to a recipient associated with the transfer condition, determine that the recipient has reset a password associated with the network application, and forward, to the recipient via the mail server, subsequent emails from the network application.
US11706302B1

Messages can be exchanged using efficient topics. When a server is interconnected with endpoints via a broker that implements a topic-based transport protocol, the server can dynamically generate a response ID for a request message the server intends to send to an endpoint. The server can generate the response ID from an endpoint ID of the endpoint and a message ID for the request message. The server can include the endpoint ID and the message ID in the request message and can subscribe to a topic containing the response ID. Upon receiving the request message, the endpoint can extract the endpoint ID and the message ID and use them to generate the response ID. The endpoint can then send a response message that includes the topic containing the response ID. Alternatively, the response ID could be generated from a message ID and a pre-agreed upon unique ID.
US11706294B2

A method and apparatus are provided for connecting a user equipment to electronic devices. The method includes receiving, for a connection to an electronic device, a first broadcast message transmitted by the electronic device according to a first communication mode, wherein the first broadcast message includes information indicating whether the electronic device supports a connection to the electronic device according to at least one of the first communication mode or a second communication mode that is different from the first communication mode; determining whether the electronic device supports the connection to the electronic device according to at least one of the first communication mode or the second communication mode based on the information; and establishing the connection to the electronic device according to the first communication mode or the second communication mode based on a result of the determining.
US11706283B2

A distributed computing network includes one or more vehicles, each vehicle configured to act as a node in the distributed computing network, and a remote server including a processor and a memory module storing one or more non-transient processor-readable instructions that when executed by the processor cause the remote server to establish a data connection with the one or more vehicles, predict a pattern-of-use of the one or more vehicles, determine a predicted current use of the one or more vehicles, and allocate a computational task to the one or more vehicles based on the predicted pattern-of-use and the predicted current use.
US11706281B2

A method, computer program product, and computer system for receiving, by a computing device, data from a client device, the data being a piece of data from a source of digital content. A file may be created that includes the received data, the file being accessible by a file system executable on the computing device. An icon may be generated within a user interface of the file system in response to creation of the file, the icon configured to copy the received data to a cache in response to input received on the icon, and the copy of the received data within the cache may be accessible to one or more applications. The copy of the received data may be provided from the cache to at least one application accessible by the computing device so as to share the data received without accessing the file created.
US11706280B2

Systems and methods for auditing batch jobs with blockchain transactions are provided. In one embodiment, a method is provided that includes running a batch job on a client machine to download one or more files from a server machine to the client machine and determining a batch job result of the batch job. The method may further include generating a batch result transaction at the client machine. The batch result transaction may include the batch job result. In certain embodiments, the method may proceed with adding the batch result transaction to the blockchain.
US11706276B2

A receiver driven approach for playback of remote content is described. One embodiment includes obtaining information concerning the content of the media file from the remote server, identifying a starting location within the media sequence, identifying byte ranges of the media file corresponding to media required to play the media sequence from the starting location, requesting the byte ranges required to play the media sequence from the starting location, buffering received bytes of information pending commencement of playback, playing back the buffered bytes of information, receiving a user instruction, identifying byte ranges of the media file corresponding to media required to play the media sequence in accordance with the user instruction, flushing previous byte range requests, and requesting the byte ranges required to play the media in accordance with the user instruction.
US11706259B2

Embodiments of the present invention provide a system for providing selective security regulations associated with network communications to users. The system is configured for extracting user data associated with a user, identifying one or more characteristics based on the extracted user data, generating a custom security package for the user based on the one or more characteristics, displaying one or more options associated with the custom security package on a user device of the user, prompting the user to select at least one option from the one or more options, receiving the at least one option from the user, and deploying a functionality associated with the at least one option from the custom security package.
US11706255B2

A network server is provided. The network server includes at least one processor in communication with at least one memory device. The network server is programmed to receive an access request originating from a user device, perform an authentication process for connecting with the user device, transmit, to the user device, a request message for a media access control (MAC) address of the user device, receive, from the user device, a response message including the MAC address of the user device, and determine whether to grant the access request based on the MAC address of the user device.
US11706253B2

A computer-implemented method for generating a first set of longest common sequences from a plurality of known malicious webpages, the first set of longest common sequences representing input data from which a human generates a set of regular expressions for detecting phishing webpages. There is included obtaining HTML source strings from the plurality of known malicious webpages and transforming the HTML source strings to reduce the number of at least one of stop words and repeated tags, thereby obtaining a set of transformed source strings. There is further included performing string alignment on the set of transformed source strings, thereby obtaining at least a scoring matrix. There is additionally included obtaining a second set of longest common sequences responsive to the performing the string alignment. There is further included filtering the second set of longest common sequences, thereby obtaining the first set of longest common sequences.
US11706249B2

Identifying network applications using images generated from payload data and time data. In some embodiments, a method may include capturing target payload data and target time data from a target flow of network packets between a target client application and a target server application, generating a target image from the target payload data and the target time data, and determining, based on the target image, an output including an extent to which the target image matches one of a plurality of predetermined images in order to determine a likelihood that the target client application and/or the target server application matches one of a plurality of predetermined client applications and/or one of a plurality of predetermined server applications.
US11706247B2

Techniques for detecting instances of external fraud by monitoring digital activities that are performed with accounts associated with an enterprise are disclosed. In one example, a threat detection platform determines the likelihood that an incoming email is indicative of external fraud based on the context and content of the incoming email. To understand the risk posed by an incoming email, the threat detection platform may seek to determine not only whether the sender normally communicates with the recipient, but also whether the topic is one normally discussed by the sender and recipient. In this way, the threat detection platform can establish whether the incoming email deviates from past emails exchanged between the sender and recipient.
US11706237B2

Disclosed are various examples for threat detection and security for edge devices in communication with Internet-of-Things (IoT) devices. In one example, a baseline behavior profile for a gateway virtual machine is transmitted from a management service to a gateway security process executed in a gateway device. The management service receives an anomaly notification including an indication of an anomaly from the baseline behavior profile. The managements service generates a user interface that shows a description of the anomaly.
US11706227B2

A system including a processor and a non-transitory, tangible computer-readable medium in which computer program instructions are stored, which instructions, when read by a computer, cause the computer to process access permission type-specific access permission requests from enterprise users in an enterprise, the system including access permission type-specific access permission request receiving functionality operable for receiving at least one request for at least one access permission type-specific access permission of at least one user to at least one data element in the enterprise, and access permission type-specific access permission request output providing functionality operable for employing information pertaining to ones of the enterprise users having similarities to the at least one user with respect to at least the access permission type-specific access permission to the data elements in order to provide an output indication of perceived appropriateness of grant of the request.
US11706223B2

A computer system for controlling access to digital data and algorithms, including a multitude of local systems provided at a plurality of remote locations. At least a first subset of the multitude of local systems comprises at least one data acquisition device adapted to generate and provide raw digital data. At least a second subset of the multitude of local systems comprises at least one data processing unit having a memory with a memory capacity and a processor with a computing capacity to process raw digital data to generate processed digital data to be presented to one or more of a plurality of users of the system. The system also includes a filter system, wherein at least one filter is assigned at each local system, each filter having a filter setting for restricting and prohibiting data transfer between the assigned local system and other local systems.
US11706221B1

A shared memory system for providing unidirectional communication across a security threshold defined by producer and consumer of a message at different security levels. A unidirectional shared memory element is accessible for read and write access by the message producer (sender), and the consumer (receiver) has only read access. Transmission logic ensures atomic receipt of the message if it is received, as the receiver cannot issue an acknowledgement to the sender as in conventional electronic interfaces. An arrangement of indices and counters allows asynchronous operation by the sender and receiver, as messages may queue up in the shared memory if the producer exceeds the consumer. In the event of a failure, anomaly, or resource overrun, it is known that messages that were received were received in entirety; in other words, atomicity is preserved.
US11706219B1

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for authenticating a first computing device to access a secure account. Receiving a request from a second computing device to be authorized to access the secure account. Providing, to the second computing, first data that represents a first machine-readable code for presentation by the second computing device. Receiving, from the first computing device, second data that represents a second machine-readable code as read by the first computing device. Authorizing the second computing device to access the secure account in response to determining that the second data accurately represents the first machine-readable code as sent to the second computing device.
US11706217B2

Disclosed are various embodiments for managing voice-driven application. In one embodiment, among others, a system includes a computing device and program instructions. The program instructions can cause the computing device to initiate a management session between a voice application service and a management service based on receiving a first request from the voice application service. The program instructions can cause the computing device to initiate an application session between a voice-driven application and the management service based at least in part on a second request received from the voice application service. The program instructions can cause the computing device to enforce a compliance policy on a data request for the voice-driven application. The data response can be transmitted to the voice application. The voice application service can provide the data response to the client device for playback.
US11706214B2

Disclosed herein are systems, methods, and computer-readable media for increasing security of devices that leverages an integration of an authentication system with at least one corporate service. In one aspect, a request is received from a user device to authenticate a person as a particular user by the authentication system. A photo of the person attempting to be authenticated as the particular user is captured. Nodal points are mapped to the captured photo of the person attempting to be authenticated, and the nodal points from the photo are compared against a reference model for facial recognition of the particular user. It is then determined whether the nodal points match the reference model for the particular user. The present technology also includes sending a command to the user device to send data to identify the person, and/or a location of the user device.
US11706203B2

Described embodiments provide systems and methods for validating a request to perform an action to access at least one file. A computing device can receive a request from the client, the request being to perform an action to access at least one file and including a first computed value indicative of one or more previous actions on files. The computing device may compare the first computed value to a second computed value maintained by the computing device independently from the first computed value. The second computed value may be indicative of the one or more previous actions on the files. The computing device may perform secondary authentication in addition to primary authentication for the client, responsive to an indication of trustworthiness of the client or the file according to the comparison of the first computed value to the second computed value.
US11706189B2

A domain management system that manages domain names, network addresses, and other aspects of a computing network domain is provided. The domain management system obtains domain data, such as domain name system (“DNS”) records, from any number of network-accessible providers of the domain data, such as DNS servers. The domain management system can store, transform, and synchronize the domain data among the network-accessible providers, even if the network-accessible providers do not all use or recognize the same format and/or content of domain data.
US11706188B2

Systems, apparatuses, and method are described for resolving domain names based on localization. A computing device may send, to a name server, a request indicating a domain. The name server may determine one or more servers associated with the domain based on the locations of the one or more servers and/or the computing device. The name server may send, to the computing device, a message indicating the determined one or more servers.
US11706187B2

A method for processing a request for anonymisation of a source IP address of an IP packet is described, the IP packet being transmitted by a transmitting device to a recipient device via a communications network, the transmitting device being connected to the network via a network terminal apparatus. The method is carried out by an anonymisation device positioned for cutting the flow between the network terminal apparatus and the recipient device, and comprises receiving the packet; establishing whether the source IP address has to be anonymised or not; if a result of the verification is negative, routing the packet to the recipient device; if the result of the verification is positive and if the anonymisation device has an address translation function: replacing the source IP address with an IP address of the anonymisation device; and. If the result of the verification is positive and if the anonymisation device does not have an address translation function, a step of routing the IP packet is routed to the recipient device via an apparatus of the network which has an address translation function.
US11706173B2

Method, apparatus and computer program product for querying a group-based communication platform are described herein. For example, the apparatus comprises at least one processor and at least one non-transitory memory including program code. The at least one non-transitory memory and the program code are configured to, with the at least one processor, cause the apparatus to at least store a plurality of electronic messages to a message corpus; receive a search query associated with the message corpus, wherein the search query comprises reaction metadata criteria; and apply the search query to the message corpus to generate a reaction search results set.
US11706172B2

Disclosed in the embodiments of the present disclose are a method and device for sending information. A particular embodiment of the method comprises: acquiring user input information input to a user terminal; determining, from a target expression image set, at least one expression image to be sent to the user terminal and matching the user input information, and a presentation order of the at least one expression image; and sending presentation information to the user terminal in response to determining that, during a historical time period, the user terminal presents the at least one expression image according to the presentation order less than or equal to a target number of times, wherein the presentation information is for instructing the user terminal to present the at least one expression image according to the presentation order.
US11706168B2

Various embodiments of the disclosure are directed to updating a selected group-based communication interface of a plurality of group-based communication interfaces with an application dialog received from an external application. In an example, user interaction data associated with a group-based communication system can be received from a client device, and a triggering event, associated with an application external to the group-based communication system, can be identified from within the user interaction data. An application dialog request, associated with the triggering event, can be sent to the application and, in response to sending the application dialog request to the application, an application dialog can be received from the application. Based at least partly on a determination that the application is validated for communication with the client device, the application dialog can be output to the client device for display via a group-based communication user interface associated with the group-based communication system.
US11706167B2

In one or more implementations, video content generated using a client application may be provided to users of the client application in association with one or more products offered for purchase via the client application. Video content items presented to a user may be identified based on a level of interest of the user in relation to the respective video content items. A level of interest of the user in relation to a video content item may be based on profile information of the user.
US11706162B2

A first forwarding VM may execute in a first availability zone and have a first IP address. Similarly, a second forwarding VM may execute in a second availability zone and have a second IP address. The first and second IP addresses may be recorded with a cloud DNS web service of a cloud provider such that both receive requests from applications directed to a particular DNS name acting as a single endpoint. A service cluster may include a master VM node and a standby VM node. An IPtable in each forwarding VM may forward a request having a port value to a cluster port value associated with the master VM node. Upon a failure of the master VM node, the current standby VM node may be promoted to execute in master mode and the IPtables may be updated to now forward requests having the port value to a cluster port value associated with the newly promoted master VM node (which was previously the standby VM node).
US11706161B2

A network switch includes a device interface configured to facilitate communication between the network switch and a plurality of building devices that serve a space, network routing circuitry configured to route network communications associated with the building devices in accordance with one or more network parameters, a control circuit configured to control the plurality of devices via the network communications to provide a plurality of space use cases for the space. and a network manager circuit configured to determine values for the one or more network parameters based on the plurality of space use cases for the space.
US11706160B2

A computing platform executing an application may receive a response to a request for opening a network port for utilization by the application from a computing platform distinct from the computer platform executing the application. The computing platform executing the application may determine whether to open the network port for utilization by the application based on the response to the request. In some embodiments, the application may invoke at least one call to an application program interface (API) of an operating system (OS) running on the computing platform executing the application, and the request may be generated responsive to the at least one call to the API of the OS.
US11706159B2

A novel design of a gateway that handles traffic in and out of a network by using a datapath pipeline is provided. The datapath pipeline includes multiple stages for performing various data-plane packet-processing operations at the edge of the network. The processing stages include centralized routing stages and distributed routing stages. The processing stages can include service-providing stages such as NAT and firewall. The gateway caches the result previous packet operations and reapplies the result to subsequent packets that meet certain criteria. For packets that do not have applicable or valid result from previous packet processing operations, the gateway datapath daemon executes the pipelined packet processing stages and records a set of data from each stage of the pipeline and synthesizes those data into a cache entry for subsequent packets.
US11706156B2

The present disclosure discloses a method and apparatus for changing a resource state, a terminal, and a storage medium, which belong to the field of smart home. A system for changing a resource state that includes a first collection resource, a first intermediate-level resource, and leaf node resources can be established. By making the first collection resource obtain link information of each leaf node resource whose resource state needs to be changed, a request that includes a default interface of the leaf node resource may be generated for the leaf node resource, such that a state of the leaf node resource can be changed accurately by the system. Therefore, the present disclosure enables the control request issued by a client to be recognized and executed by each leaf node resource, thereby increasing reliability and stability of system control.
US11706149B2

A controller obtains a forwarding latency requirement of a service flow and a destination address of the service flow, and determines a forwarding path that meets the forwarding latency requirement. The controller determines that an ingress node forwards a first cycle time number of a packet and an intermediate node forwards a second cycle time number of the packet, and separately determines a corresponding adjacent segment identifier. A label stack generated by the controller includes the adjacent segment identifier and the adjacent segment identifier. The controller sends the label stack to the ingress node, to trigger the ingress node to forward the packet within a period of time corresponding to the first cycle time number. The controller determines the forwarding path based on the forwarding latency requirement of the service flow, and generates a label stack corresponding to a forwarding time point.
US11706146B1

Programming routers in a network is accomplished using a global network manager and a plurality of local network managers. The global network manager analyzes an entire network and demand matrix in order to provide restrictions and recommendations that are communicated to a set of the local network managers. The local network managers can use the restrictions and recommendations to make local routing decisions defining a percentage of traffic routed to each neighboring node. The local network manager collects traffic metrics, such as local topology and traffic information by measuring the capacity available to reach any neighboring node. The local network manager uses the metrics in combination with the restrictions and recommendations from the global manager to make decisions on how to route network traffic.
US11706143B2

Described embodiments improve the performance of a computer network via selectively forwarding packets to bypass quality of service (QoS) processing, avoiding processing delays during critical periods of high demand, increasing throughput and efficiency may be increased by sacrificing a small amount of QoS accuracy. QoS processing may be applied to a subset of packets of a flow or connection, referred to herein as “lazy” processing or lazy byte batching. Packets that bypass QoS processing may be immediately forwarded with the same QoS settings as packets of the flow for which QoS processing is applied, resulting in tremendous overhead savings with only minimal decline in accuracy.
US11706142B2

Techniques described herein provide for fast updating of a forwarding table in a single active multihoming configuration. A first network device that is not connected to an ethernet segment (ES), receives a plurality of ethernet segment (ES) routes (e.g., EVPN type-4 routes) from a plurality of network devices that are connected to a host via the ES. When connectivity is lost to the on a designated forwarded for the ES, t the first network device performed a designated forwarding election algorithm based on the plurality of the received ES routes, to identify that a second network device of the plurality of network devices is designated as a new forwarding device. The first network device modifies an entry in a forwarding table to indicate that the host is now reachable via the second network device.
US11706135B2

The present invention relates to communications methods, apparatus and systems for providing media micro-services in a scalable and efficient manner. In an exemplary method embodiment, a packet plane control service entity performs the following operations: (i) receives a request from a Signaling-Session Border Controller to implement one or more micro-services on a media packet stream, the request including information about the media packet stream including stream identification information; generates instructions for one or more entities under the control of the packet plane control service entity to implement the requested one or more micro-services on the media packet stream; and communicates the generated instructions to the one or more entities under the control of the packet plane control service entity for implementation on the media packet stream.
US11706133B2

The present technology pertains to a group-based network policy using Segment Routing over an IPv6 dataplane (SRv6). After a source application sends a packet, an ingress node can receive the packet, and if the source node is capable, it can identify an application policy and apply it. The ingress node indicates that the policy has been applied by including policy bits in the packet encapsulation. When the packet is received by the egress node, it can determine whether the policy was already applied, and if so, the packet is forward to the destination application. If the egress node determines that the policy has not be applied the destination application can apply the policy. Both the ingress node and egress nodes can learn of source application groups, destination application groups, and applicable policies through communication with aspects of the segment routing fabric.
US11706129B2

A communication system facilities low-latency, high-availability multipath streaming between terminals (e.g., mobile terminals) and a server platform. In an example application, a remote support service operating on the server platform provides remote teleoperation, monitoring, or data processing services to a mobile terminal embodied as a vehicle or robot utilizing a low latency communication link. The low latency link enables a remote operator to receive video or telemetry feeds, and timely monitor and respond to hazards in substantially real-time. The low latency communication link may be achieved even when the data streams are transmitted over public networks incorporating at least one wireless leg, and where individual connections have varying quality of service in terms of delivery latency due to congestion or stochastic packet losses. Assignment of data streams to particular communication channels may be made on an optimization model derived from a machine-learning process or simulation.
US11706128B2

Embodiments of a method and an apparatus for multi-link data transmission are disclosed. In an embodiment, a method of multi-link communications involves at a first MLD that supports a first link, link1, and a second link, link2, transmitting a first frame during a first Transmission Opportunity (TXOP) on link1, and a second frame during a second TXOP on link2, simultaneously to a second MLD, receiving, at the first MLD, a first response frame to the first frame transmitted on link1 after a transmission end time of the first frame, identifying, at the first MLD, that a response frame to the second frame transmitted on link2 was not received after the transmission end time of the second frame, and transmitting, at the first MLD, a third frame on link1 and a fourth frame on link2 simultaneously, after receiving the first response frame on link1.
US11706125B2

In an embodiment, a data processing method comprises receiving, at a BIER replicator node that is programmed to implement Bit Index Explicit Replication (BIER) protocol, from a data source, a multicast stream packet identifying a service-level multicast group address; using the BIER replicator node, replicating the multicast stream packet according to BIER protocol and transmitting two or more replicated packet streams to two or more BIER receiver nodes that are programmed to implement BIER; using the two or more BIER receiver nodes, transmitting the two or more replicated packet streams to two or more receivers. Other embodiments may use modified iOAM (In-situ Operations, Administration, and Maintenance) techniques.
US11706123B2

A system and method for determining a network path through a network that is managed by a software defined network (TsSDN) controller incorporating time management are disclosed. In some embodiments, the SDN controller can determine that a data packet originating from a transmitting device and directed to a receiving device is associated with one of: time-sensitive, timeaware or best effort characteristic. The controller can then determine a network path for transport of the data packet from the transmitting device to the receiving device with a guaranteed end to end delay to satisfy the characteristic. The end to end delay considers latency through each layer the data packet transitions through after being conjured at an application layer of the transmitting device. The data packet is then transmitted from the transmitting device via the network path to the receiving device.
US11706117B1

Disclosed are various embodiments for monitoring services in a multi-service system and detecting deviations in health metrics and/or business metrics of one or more of the services. In response to detecting a metric deviation for a given service, an enhanced message is generated detailing specific data associated with the detected deviation. The enhanced message is generated and transmitted to a recipient address associated with a services that may be affected by the deviation. An action service monitoring messages being received by a domain associated with the recipient address analyzes the information included in the message content. According to the analysis of the message, an action to be performed is identified according to the detected deviation and one or more action requests are generated and transmitted to one or more components and/or services of the multi-service system.
US11706116B2

Examples are disclosed and described to facilitate resolution of Internet Protocol address conflicts. An example method includes periodically broadcasting, by the playback device over the network, a probe message, detecting, by the playback device, a change in status associated with the connection, based on the detection, obtaining, by the playback device, a new Internet Protocol (IP) address; and based on the detection, including, by the playback device in at least one probe message broadcast subsequent to the detection, an indication for other playback devices on the network to obtain a new IP address.
US11706107B2

This application provides a data management method and an apparatus, and relate to the field of data storage, to implement unified management of management data. The method includes: A management service function unit receives an association relationship configuration request, where the association relationship configuration request carries association information used to configure an association relationship between a first management function unit and a first management data function unit; receives a first query request, where the first query request carries instance information of the first management function unit or instance indication information of the first management function unit; determines instance information that is of the first management data function unit and that corresponds to the instance information of the first management function unit; or determines instance information that is of the first management data function unit and that corresponds to the instance indication information of the first management function unit.
US11706106B2

Policies can be applied to, and enforced for, specific resources by applying a corresponding tag to those resources. An entity, such as a customer of a resource provider, can generate one or more policies to be applied to a set of resources, where those policies can relate to data retention, backup, lifecycle events, and other such aspects. Each policy can be associated with a particular tag, which may comprise a key-value pair to be applied to various resources. A policy enforcement manager can determine the tagged resources and ensure that the relevant policies are applied. The policies can include logic or intelligence for performing a variety of tasks with respect to resources, groups of resources, or types of resources, as identified using the tags.
US11706103B2

Methods are provided for modifying assurance monitoring of a service based on operational states. The methods involve establishing, based on service configuration information, an assurance monitoring for a service provided by a plurality of network nodes that establish network connectivity for the service. The service includes a plurality of sub-services. The methods further involve obtaining, from the plurality of network nodes, telemetry data related to the service, determining one or more operational states of the plurality of network nodes based on the telemetry data, and modifying the assurance monitoring for the service based on the one or more operational states of the plurality of network nodes.
US11706095B2

A new cybersecurity incident is registered at a security incident response platform. At a playbook generation system, details are received of the new cybersecurity incident from the security incident response platform. At least some of the details correspond to a set of features of the new cybersecurity incident. A set or subset of nearest neighbors of the new cybersecurity incident is localized in a feature space. The nearest neighbors of the new cybersecurity incident are other cybersecurity incidents having a distance from the new cybersecurity incident within the feature space that is defined by differences in features of the nearest neighbors with respect to the set of features of the new cybersecurity incident. A custom playbook is created for responding to the new cybersecurity incident having prescriptive procedures based on occurrences of prescriptive procedures previously employed in response to the nearest neighbor cybersecurity incidents.
US11706085B2

A method includes deploying a network device within a fabric having a management network by attaching the network device through the management network to a port of a role allocator, wherein the role allocator includes one or more ports designated as first level port connections and one or more other ports designated as second level port connections. If the deployed network device is attached to one of the ports designated as first level port connections, the deployed network device is configured as a first level device. If the deployed network device is attached to one of the ports designated as second level port connections, the deployed network device is configured as a second level device.
US11706084B2

The present approach relates to event monitoring and management of an instance using a generated service map, allowing monitoring of CIs (e.g., applications) and connections that are currently active in a user's specific instance. A self-monitoring solution is generated for a user (e.g., via an application) that depicts status, configuration, and errors related to the user's instance. In certain implementations, the present techniques involve applying internal knowledge of the working of a user's instance and applications to perform the self-monitoring, and determine when an alert should be generated. Further, the present techniques may involve making a determination to provide a user with a self-help solution in addition or based on the self-monitoring of the user's instance.
US11706082B1

A computer system is configured to perform a reconciliation process with respect to a current state of a cloud service and a goal state of the cloud service. Performing the reconciliation process includes obtaining the current state of the cloud service, obtaining the goal state of the cloud service, evaluating the current state against the goal state to generate a reconciliation plan that comprises a plurality of operations, and starting execution of the reconciliation plan at the cloud service including performing at least one of the plurality of operations in the reconciliation plan. In response to detecting an event, the computer system reperforms the reconciliation process again such that one or more current state, the goal state, or the reconciliation plan changes.
US11706077B2

A method, system, and computer program product for contextual generation of an ephemeral network are provided. The method detects an initiating event for network generation associated with a user of a first computing device. The method determines a duration of the initiating event. A set of network members is determined based on the initiating event and the duration. The method establishes an ephemeral network, connecting at least a portion of computing devices associated with the set of network members. The ephemeral network is terminated in response to detecting a completion event. In response to terminating the ephemeral network, member information for the set of network members is removed from the portion of the computing devices.
US11706072B2

An apparatus including: a communication unit configured to perform radio communication; and a control unit configured to perform control such that control information regarding a resource to which a filter for limiting a width of a guard band in a frequency band to be used in the radio communication is applied is transmitted to an external apparatus through the radio communication. The filter improves frequency use efficiency.
US11706068B2

A method and apparatus for performing an initial access procedure in a wireless communication system is provided. A low cost user equipment (UE) transmits a list of capabilities to a network, and receives a reject message from the network when at least one of the capabilities is not supported by the network. The list of capabilities may be transmitted during a random access procedure via a random access preamble on a physical random access channel (PRACH) or a message 3 on a physical uplink shared channel (PUSCH). The reject message may be received during the random access procedure a random access response or an acknowledge message for the message 3.
US11706067B2

An augmented reality (AR) system time-reverses a detection signal and a data signal based on a location detection signal, and outputs the time-reversed detection signal and data signal. Accordingly, data transmission efficiency may increase.
US11706065B2

A device generates a symbol sequence by performing adaptive equalization by an estimation inverse transfer function of a transmission line on a reception signal sequence extracted from the transmission line, and performing provisional determination on the symbol sequence generated; generates a plurality of the symbol sequences indicating transmission line states in a range of a provisional determination symbol provisionally determined and nearby symbols of the provisional determination symbol; generates, based on the plurality of the symbol sequences indicating the transmission line states generated and an estimation transfer function of the transmission line, an estimation reception symbol sequence for each of the transmission line states; calculates a metric between the symbol sequence obtained from the reception signal sequence and each of a plurality of the estimation reception symbol sequences; selects a most likelihood estimation reception symbol sequence of the plurality of the estimation reception symbol sequences, based on the calculated metric, the provisional determination symbol, and the nearby symbols of the provisional determination symbol; and determines a transmission symbol sequence.
US11706058B2

A communication device communicates a radio frame including a preamble and a data field of a physical layer (PHY). The preamble includes an L-STF (Legacy Short Training Field), an L-LTF (Legacy Long Training Field), an L-SIG (Legacy Signal Field), an EHT-SIG-A (Extremely High Throughput Signal A Field), an EHT-STF, and an EHT-LTF, and the EHT-SIG-A includes a field indicating a standard that the radio frame complies with.
US11706055B2

A terminal and a method performed by the terminal are provided for use in a wireless communication system. The method includes receiving configuration information associated with a sounding reference signal (SRS) through higher layer signaling; receiving first DL control information (DCI); and transmitting, based on the first DCI, the SRS in an available slot from a reference slot.
US11706054B2

A distributed base station system comprises a remote radio unit, RRU, and a base band unit, BBU, connected to the RRU over a fronthaul link, the RRU being connected to N antennas. The method comprising by the RRU: obtaining uplink signals as received at the N antennas from a number of User Equipment, UEs, wirelessly connected to the RRU; obtaining a channel estimation matrix of the wireless communication channels; determining an interference covariance estimation matrix based on the obtained channel estimation matrix and on other channel information different from the channel estimation matrix; sending information on the channel estimation matrix and on the interference covariance estimation matrix to the BBU; determining intermediate signals based on the uplink signals, the channel estimation matrix and the interference covariance estimation matrix, and sending the intermediate signals to the BBU.
US11706050B2

A polling method for server sensors, a polling system for server sensors, and a computer-readable memory medium. The polling method includes: when a BMC is activated, acquiring attribute information of sensors (S101); classifying the sensors according to polling cycles in the attribute information (S102); adding the sensors with the same polling cycle into a same preset data structure (S103); and polling the sensors in the preset data structure using a thread (S104). According to the method, the problem of low polling efficiency caused by polling sensors with different cycles using a single thread may be solved, and each sensor may be polled independently while minimizing influences between polling of the sensors.
US11706042B2

Methods and systems provide for a spatial chat view dashboard within a messaging platform. A system displays, at a client device, a dashboard user interface for a messaging platform, consisting of at least a dashboard virtual background and one or more spatial chat rooms. Each of the spatial chat rooms is a spatial representation of a chat session associated with a number of participants. The system receives, from the client device, a selection of a spatial chat room from the one or more spatial chat rooms. The system then displays a spatial chat user interface comprising the selected spatial chat room.
US11706031B2

A security authentication system for a website provides a safe login without having to directly enter an ID and a password on a user device requesting login to the website. A first user device receives one-time use authentication information from a second user device after the second user device received the one-time use authentication information from an authentication server without the authentication server receiving user login authentication information from the second user device. A request is transmitted to the authentication server based on the one-time use authentication information and the user login authentication information. In response to the request, one-time password (OTP) information is received from the authentication server. The OTP information is presented by the first user device, such that the OTP information can be entered into the second user device and used in a request to log in to the website.
US11706028B1

Disclosed herein is a social media platform profile identification and social discovery feature. Disclosed social media networks enable introduction of users that may not otherwise know one another based on commonality between those users. Social media profiles are identified by digital objects instead of or in addition to more traditional indexing methods such as real names or screen names. Social discovery on a social network is performed via matching to similar behavior profiles in activity monitored by a block explorer. Machine learning models categorize behavior patterns observed by the block explorer into a machine recognized glossary. Social networks further recommend actions by users based on the monitored online behaviors of social connections.
US11706024B2

In a storage system that includes a plurality of storage devices configured into one or more write groups, quorum-aware secret sharing may include: encrypting a device key for each storage device using a master secret; generating a plurality of shares from the master secret such that a minimum number of storage devices required from each write group for a quorum to boot the storage system is not less than a minimum number of shares required to reconstruct the master secret; and storing the encrypted device key and a separate share of the plurality of shares in each storage device.
US11706013B2

A method for allocating resources by a Base Station (BS) in a wireless communication system is disclosed. The method includes configuring a Resource Block Group (RBG) dependent on whether a User Equipment (UE) operates in Full Duplex Radio (FDR) mode or Half Duplex (HD) mode, and allocating resources to the UE in units of the configured RBG. The RBG includes a plurality of Resource Blocks (RBs).
US11706009B2

The present invention relates to a method and apparatus for transmitting and receiving an acknowledgement/negative-acknowledgement (ACK/NACK) by a terminal for vehicle-to-everything (V2X) communication in a wireless communication system. Particularly, the method comprises the steps of: receiving a configuration for a resource pool for V2X communication; for a particular wireless resource in a resource pool, when a reception time point of a first ACK/NACK and a transmission time of a second ACK/NACK have been simultaneously configured, determining a use of the particular wireless resource; and transmitting and receiving one ACK/NACK selected from the first ACK/NACK and the second ACK/NACK, on the basis of the use of the particular wireless resource. The UE is capable of communicating with at least one of another UE, a UE related to an autonomous driving vehicle, a base station or a network.
US11706005B2

The present invention provides an uplink reference signal sending method, and the method includes: sending, by a terminal device, an uplink reference signal on N1 second component carriers within a determined uplink reference signal sending time, and prohibiting, on M1 first component carriers in M first component carriers within the sending time, the terminal device from sending an uplink signal, where the first component carriers are carriers on which scheduling of uplink data transmission is allowed, and the second component carriers are carriers on which scheduling of uplink data transmission is prohibited. N1=M1, in other words, within the sending time, a quantity N1 of second component carriers on which the uplink reference signal is sent is less than or equal to a quantity M1 of first component carriers on which sending of the uplink signal is prohibited.
US11706002B2

A reference signaling scheme is provided that is based on the use of a Zadoff Chu sequence with cyclic repetition, optionally code division multiplexing precoding, together with frequency domain spectral shaping (FDSS). A specific pulse shape design for the FDSS part of the reference signal scheme in some embodiments involves the use of a raised cosine pulse raised to the power of β. The new solution for generating reference signals has a Low peak average power ratio that matches the PAPR of SC-OQAM, good channel estimation performance, and the ability to implement CDM in the frequency domain to increase multiplexing gain.
US11705997B2

Methods, apparatuses, and computer-readable mediums for wireless communication by a user equipment (UE) includes transmitting a packet on a first resource, determining one or more repetition resources on which to send one or more redundancy versions of the packet, wherein the one or more repetition resources are at a time subsequent to the first resource, transmitting repetition resource information identifying the one or more repetition resources to one or more neighboring UEs, and transmitting the one or more redundancy versions of the packet on respective ones of the one or more repetition resources.
US11705993B2

Hybrid automatic repeat request (HARQ)-acknowledgement (ACK) feedback codebook enhancements are disclosed. A size of feedback codebook may be reduced explicitly or implicitly. For example, an indicator may be identified by a corresponding field of a downlink control message. In some aspects, the indicator may indicate that multiple Physical Downlink or Uplink Shared Channels (PDSCHs/PUSCHs) are actually scheduled during one or more slots of a window corresponding to the feedback codebook. Responsive to receiving the indicator, a device may refrain from reducing the size of the feedback codebook to exclude acknowledgement feedback for additional possible PDSCH/PUSCH occasions of the slots of the window. In some aspects, a device identifies possible PDSCH/PUSCH occasions that occur outside of one or more Channel Occupancy Times (COTs) of a window. The device may generate a reduced size feedback codebook by excluding the possible PDSCH/PUSCH occasions that occur outside of the COTs of the window.
US11705991B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a warning message comprising a first indication of a priority of the warning message and a second indication that identifies an event. The UE may transmit a repetition of the warning message based at least in part on the first indication. Numerous other aspects are described.
US11705988B2

A receiver may include a first filter configured to generate a first estimation of a symbol of a received signal and a second filter configured to generate a second estimation of the symbol of the received signal. The receiver may also include a decoder configured to decode the symbol using one of the first estimation and the second estimation and a decision circuit configured to select one of the first estimation and the second estimation to provide to the decoder for decoding of the symbol based on a comparison of the first estimation to an estimation threshold.
US11705987B2

An apparatus for handling an incoming communication data frame containing a plurality of bits is provided. The apparatus may include a plurality of data matchers, each data matcher configured to compare a subset of the plurality of bits of the communication data frame with a predetermined data pattern of a plurality of data patterns and to provide a data matcher output to indicate the result of the data matcher comparison, a plurality of selectors, each selector configured to compare a subset of the data matcher outputs of the plurality of data matchers with a predetermined selection pattern of a plurality of selection patterns and to provide a selector output to indicate the result of the selector comparison, and a frame filter configured to transfer the incoming frame to application logic only if the selector outputs of the plurality of selectors match a predetermined filter pattern, and to also transfer the selector outputs of the plurality of selectors to the application logic.
US11705982B2

Methods and apparatus for wireless communication are provided. In aspects, a method of wireless communication is provided, including scheduling ultra-reliable and low-latency communications (URLLC) communication in a first set of one or more portions of a self-contained wireless communication structure having a plurality of portions, and adjusting one or more (e.g., remaining) portions of the self-contained wireless communication structure subsequent the first set of one or more portions based on the scheduling. In aspects, the method further includes transmitting an indicator of the adjusting to one or more user equipments. Numerous other aspects are provided.
US11705978B2

A cable distribution system includes a head end connected to a plurality of customer devices through a transmission network that provides data suitable for the plurality of customer devices. A traffic monitoring system receives from a customer support device a first data request for a parameter of one of the plurality of customer devices. The traffic monitoring system provides a second data request for the parameter of the one of said plurality of customer devices to a customer premise equipment management system in response to receiving the first data request. The traffic monitoring system receiving a first data response including the parameter from the customer premise equipment management system in response to providing the second data request to the customer premise equipment management system. The traffic monitoring system providing a second data response including the parameter from the traffic management system to the customer support device in response to receiving the first data response.
US11705975B2

A base station may perform online calibration of antenna elements at two or more transmission reception points (TRPs) based on measurements by one or more user equipment (UEs). The base station may transmit a request for the one or more UEs to perform antenna calibration measurements, for the two or more TRPs, during measurement gaps. The base station may coordinate, among the two or more TRPs, transmission of reference signals during the measurement gaps. The base station may receive a report based on the antenna calibration measurements from the one or more UEs. The base station may calibrate one or more antenna elements of the two or more TRPs based on the antenna calibration measurements.
US11705969B2

A receiver is configured to extract a clock signal superimposed on a detection signal of light propagated to determine whether or not SNR of the detection signal is lower than SNR at which the detection signal can be demodulated; compensate a signal value of the detection signal by using a filter coefficient and output a detection signal after signal value compensation; and calculate, as the filter coefficient, a filter coefficient in which a signal value of a detection signal output from the adaptive filter is a reference value when it is determined that there is no SNR degradation, and changes the filter coefficient to a stored filter coefficient when it is determined that SNR degradation occurs.
US11705968B2

An adjusting method for stabilizing optical characteristic parameters applicable to transmitter optical subassemblies with silicon photonic chips is provided. The adjusting method might include: sensing an initial optical signal emitted by the transmitter optical subassembly with first control component, controlling phase setting parameter of the silicon photonic chip with the first control component to change the transmitter optical subassembly from emitting the initial optical signal to emitting a first modified optical signal, transmitting a power target value to second control component when the first modified optical signal conforms to the phase target value and sensing the first modified optical signal with the second control component, and controlling a bias current of the transmitter optical subassembly according to the first modified optical signal and the power target value to change the transmitter optical subassembly from emitting the first modified optical signal to emitting a second modified optical signal.
US11705964B2

A computational framework for designing a constellation that includes a plurality of cube satellites (CubeSats) includes an orbit propagation module, a coverage estimation module, a connectivity estimation module and an annealing module. The orbit propagation module receives a plurality of static parameters for the constellation and determines a position vector, a ground track and sub-satellite points for each of the plurality of CubeSats. The coverage estimation module receives the plurality of static parameters for the constellation and estimates Earth coverage for the constellation. The connectivity estimation module receives the plurality of static parameters for the constellation and determines active inter-satellite links (ISL) in the constellation. The annealing module receives input from the orbit propagation module, the coverage estimation module and the connectivity module and employs an annealing algorithm that generates a constellation design.
US11705958B2

Technology for a repeater is disclosed. The repeater can include a first antenna port and a second antenna port. The repeater can include a first uplink analog signal amplification and filtering path and a second uplink analog signal amplification and filtering path. The repeater can include a first downlink analog signal amplification and filtering path and a second downlink analog signal amplification and filtering path. The repeater can include an uplink software-defined filtering (SDF) module and a downlink SDF module.
US11705957B2

A method (20) performed by a wireless terminal (10) in a wireless communication network (10, 30) is provided. In the method (20), based on a (fundamental) polarization tracking capability of the wireless terminal (10), at least one downlink polarization of at least one downlink communication between the wireless terminal (10) and an access node (30) of the wireless communication network (10, 30) is determined (204). A reference polarization from the at least one downlink polarization is selected (207). Based on the reference polarization and a (momentary) polarization tracking ability of the wireless terminal (10), at least one uplink polarization of at least one uplink communication between the wireless terminal (10) and the access node (30) is configured (210). A corresponding method (40) performed by the access node (30) is also provided, as well as the mentioned wireless terminal (10) and the access node (30).
US11705950B2

A method of a user equipment (UE) in a wireless communication system is provided. The method comprises receiving, from at least one transmission and reception point (TRP) of a group of (N) TRPs, channel status information (CSI) configuration information, determining a CSI report based on the CSI configuration information, identifying, based on the configuration information, one or more TRPs of the group of (N) TRPs to transmit the determined CSI report, and transmitting, to the one or more TRPs, the determined CSI report over an uplink channel. The determined CSI report includes a TRP indicator for selecting (M) TRPs of the group of (N) TRPs, and CSI for each of the selected (M) TRPs, wherein N is greater than one, and wherein M is greater or equal to 1, and less or equal to N.
US11705949B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit a negative acknowledgment (NACK) associated with a downlink communication, and may transmit a channel state information (CSI) report based at least in part on transmitting the NACK associated with the downlink communication. In some aspects, a base station may receive, from a UE, a NACK associated with a downlink communication, and may monitor for the CSI report based at least in part on receiving the NACK. Numerous other aspects are provided.
US11705944B2

A method for a user equipment (UE) to receive physical downlink control channels (PDCCHs) is provided. The UE receives configuration information for a first control resource set that includes a number of symbols in a time domain and a number of resource blocks (RBs) in a frequency domain, configuration information indicating a first number of Nbundle,1 frequency contiguous RBs, and a PDCCH in the first control resource set in a number of frequency distributed blocks of Nbundle,1 RBs. The UE assumes that a demodulation reference signal associated with the reception of the PDCCH has a same preceding over the Nbundle,1 RBs. A method for constructing a search space to reduce a number of channel estimations that the UE performs for decoding PDCCHs, relative to conventional search spaces, is also provided.
US11705938B1

A network switch includes a plurality of Ethernet ports having their respective Physical (PHY) Layers interconnected via a common interface local to the network switch. The common interface passes local information among respective PHY layers of the Ethernet ports. One or more receivers receive for a first Ethernet port, over the common interface, information indicative of alien cross talk affecting at least one second Ethernet port of the network switch. A transmission attribute controller adjusts, based on the received information indicative of alien cross talk affecting the at least one second Ethernet port of the network switch, a first data rate and/or a first transmit power level to a second data rate and/or a second transmit power level for transmitting data to a remote network device. A first transmitter transmits data via the first Ethernet port according to the second data rate and/or the second transmit power level.
US11705929B2

A direct digital radio having a high-speed RF front end in communication with an antenna, and a radio subsystem that can be configured to form a programmable multi-standard transceiver system. The high-speed RF front including RF inputs configured to receive a plurality of radio frequencies (e.g., frequencies between 400 MHz to 7.2 GHz, millimeter wave frequency signals, etc.) and wideband low noise amplifiers provides amplified signals to RF data converters, analog interfaces, digital interfaces, component interfaces, etc. The programmable multi-standard transceiver is operable in frequencies compatible with multiple networks such as private LTE and 5G networks as well as other wireless IoT standards and WiFi in multi-standard network access equipment. The programmable multi-standard transceiver can greatly reduce complexity for the baseband processing, lower the cost of the overall transceiver system, reduce power consumption, and at the same time, benefit from improvements on the digital functions through integration.
US11705923B2

Disclosed are a method and apparatus for storing data. The method includes: acquiring data to be stored; converting the data to be stored from an initial data type to a target data type, a data length corresponding to the target data type being less than that corresponding to the initial data type; and storing the data to be stored of the target data type to a database. In the method according to the present disclosure, a storage space occupied by the data to be stored in the database is greatly reduced. In addition, the method according to the present disclosure is performed prior to lossy or lossless data compression storage of the data to be stored in the related art. That is, on the basis of a compression ratio when the data to be stored is stored in the related art, the present disclosure further improves a compression effect of the data to be stored by reducing the data length when the data to be stored is stored, and further saves storage resources of the database.
US11705920B2

The present application discloses a successive approximation register analog-to-digital converter with passive noise shaping, which comprises: switch capacitor arrays for acquiring analog input signals; a noise shaping circuit which is a passive integral network, the network has input ends connected respectively with output ends of the two switch capacitor arrays and for acquiring output signals of the two switch capacitor arrays, is composed of a plurality of sub passive integrators, and reconfigures the plurality of sub passive integrators to different circuit forms; a comparator which has two input ends connected respectively with output ends of the passive integral network and an output end connected with an input end of a logic circuit, and is configured to compare magnitudes of the output signals of the noise shaping circuit.
US11705913B2

A method for controlling a phase-locked loop circuit, can include: acquiring values of a voltage-controlled oscillator capacitor array control signal respectively corresponding to desired values of a frequency control word signal and acquiring values of a charge pump current control signal respectively corresponding to the desired values of the frequency control word signal in a calibration mode, where the frequency control word signal characterizes a ratio of a desired locked frequency to a frequency of a reference signal; and determining a target value of the voltage-controlled oscillator capacitor array control signal corresponding to a target value of the frequency control word signal and a target value of the charge pump current control signal corresponding to the target value of the frequency control word signal in a phase-locked mode, in order to control the phase-locked loop circuit to achieve phase lock.
US11705907B2

The present invention provides a fractional frequency divider, wherein the fractional frequency divider includes a plurality of registers, a counter, a control signal generator and a clock gating circuit. Regarding the plurality of registers, at least a portion of the registers are set to have values The counter is configured to sequentially generate a plurality of counter values, wherein the plurality of counter values correspond to the at least a portion of the registers, respectively, and the plurality of counter values are generated repeatedly The control signal generator is configured to generate a control signal based on the received counter value and the value of the corresponding register. The clock gating circuit is configured to refer to the control signal to mask or not mask an input clock signal to generate an output clock signal.
US11705904B2

A microcontroller includes an input pin and internal pull-up and pull-down circuits. External pull-up and pull-down circuits are also coupled to the input pin. The microcontroller is operable according to different configuration modes which include configuring the input pin in a floating state. A control logic then configures the internal pull-up and pull-down circuits according to an internal pull-up mode to acquire a first input voltage signal (at a first logic value) from the input pin, and further configure the internal pull-up and pull-down circuits according to an internal pull-down mode to acquire a second input voltage signal (at a second logic value) from the input pin. A selection of the operating mode of the MCU is then made based on the acquired first and second logic values.
US11705893B2

A latch circuit includes a latch module, a set control module, a reset control module and a clock module, wherein the latch module is employed for latching data input by a data module, the set control module is employed for controlling the latch module to output a high-level signal, the reset control module is employed for controlling the latch module to output a low-level signal, and the clock module is employed for providing a readout clock signal to the latch module.
US11705883B2

Aspects of this disclosure relate to an acoustic wave resonator with transverse mode suppression. The acoustic wave resonator can include a piezoelectric layer, an interdigital transducer electrode, a temperature compensation layer, and a mass loading strip. The mass loading strip can be a conductive strip. The mass loading strip can overlap edge portions of fingers of the interdigital transducer electrode. A layer of the mass loading strip can have a density that is at least as high as a density of a material of the interdigital transducer electrode. The material of the interdigital transducer can impact acoustic properties of the acoustic wave resonator.
US11705882B2

Modern RF front end filters feature acoustic resonators in a film bulk acoustic resonator (FBAR) structure. An acoustic filter is a circuit that includes at least (and typically significantly more) two resonators. The acoustic resonator structure comprises a substrate including sidewalls and a vertical cavity between the sidewalls and two or more resonators deposited in the vertical cavity.
US11705866B2

A crystal oscillator includes an oscillating substrate, a hollow frame, a first electrode, and a second electrode. The oscillating substrate includes a main oscillating region and a thinned region that has a thickness smaller than that of the main oscillating region. The first and second electrodes are disposed on a first surface of the oscillating substrate and a second surface opposite to the first surface, respectively. The hollow frame is disposed on the second surface. The second electrode includes a second electrode portion that has at least one opening in positional correspondence with the thinned region. A method for making the crystal oscillator is also provided herein.
US11705858B2

A solar electrical generator comprising an outer wall (1, 2) arranged to partially surround a cavity. A hub (3) is provided within the cavity wherein the outer face (4) of the wall is provided with solar cells (5). At least one of the hub (3) and the inner face (6) of the wall are provided with solar cells (5).
US11705857B2

Device for securing an orientation of photovoltaic panels includes a stem for supporting an array assembly of photovoltaic panels for producing an electrical current when exposed to sunlight. The array assembly also includes eye blades positioned on a side opposite to a photovoltaic panel carrying side. The device further includes a joint interconnecting the stem and the eye blades of the array assembly. The joint includes a hollow horizontal conduit and a bolting mechanism for adjustably coupling the eye blades to lateral ends of the horizontal conduit. A side of each eye blade facing the horizontal conduit carries an eye blade gear that cooperatively meshes with a conduit gear carried at or near a lateral end of the horizontal conduit to secure the array assembly at a predetermined angle relative to a longitudinal axis passing through the stem.
US11705849B2

A vehicle includes a battery, an inverter, a permanent magnet electric machine, and a controller. The controller commands discharge of a storage element of the inverter through the permanent magnet electric machine via a current having a zero quadrature axis component and a positive direct axis component.
US11705847B2

A drive device for an AC motor includes: an adaptive observation unit that adaptively estimates an angular velocity of a rotor of an AC motor; a speed control unit that determines a first torque command with which an angular velocity command matches an average value of an estimated angular velocity; a phase lead amount calculation unit that calculates, based on a disturbance frequency, a phase lead amount of a transfer function from a true angular velocity to a model deviation; a vibration suppression control unit that determines, based on a frequency of load torque pulsations, the model deviation, and the phase lead amount, a second torque command with which speed pulsations in the AC motor are suppressed; and a torque control unit that controls a torque of the AC motor based on the first torque command and the second torque command.
US11705838B2

The controller comprises a displacement controller and a rotating speed controller. The displacement controller includes a vibration force compensation control module and a dead-time vibration compensation module. The vibration force compensation control module receives actual displacements and a rotor mechanical angle and outputs corresponding vibration compensation forces. The vibration force compensation control module comprises a first neural network band-pass filter, a second neural network band-pass filter, a third PID controller, and a fourth PID controller. The dead-time vibration compensation module receives a rotor electrical angle and an actual quadrature-direct axis currents and an actual direct axis current and outputs a quadrature-direct axis compensation voltages and a direct axis compensation voltage. The dead-time vibration compensation module consists of a third neural network band-pass filter in a direct axis direction, a fourth neural network band-pass filter in a quadrature axis direction, a sixth PI controller, and a seventh PI controller.
US11705831B2

An electric tool includes a drive structure, a motor, a driver circuit, and a controller. The controller is configured to output a first control signal to control the motor to drive the drive structure to operate in a first operation mode for a preset period of time in response to receiving a start instruction. After the preset period of time, the controller will output a second control signal to control the motor to drive the drive structure to operate in a second operation mode to a preset state. The first operation mode and the second operation mode are two opposite operation modes.
US11705819B2

An integrated circuit for a power supply circuit configured to generate an output voltage at a target level. The power supply circuit includes a transistor configured to control an inductor current flowing through an inductor. The integrated circuit includes a load detection circuit outputting a detection voltage corresponding to a power consumption of a load and corresponding to an operation mode of the power supply circuit, based on the inductor current, a driver circuit driving the transistor according to the operation mode of the power supply circuit, and a control circuit configured to control the driver circuit to switch the power supply circuit to a second mode upon the detection voltage reaching a first level with a decrease in the power consumption of the load, and to a first mode upon the detection voltage reaching a second level with an increase in the power consumption of the load.
US11705818B2

A DC-DC converter includes a first switching network that receives the input DC voltage and outputs a first AC voltage, a transformer, and a secondary side conversion circuit that receives the second AC voltage and outputs the output DC voltage. The transformer includes a first plurality of primary windings, a second plurality of primary windings and a plurality of secondary windings. The transformer is configured to receive the first AC voltage and outputting a second AC voltage. When the input DC voltage is intended to be used in a low voltage range, the first plurality of primary windings and the second plurality of primary windings are configured to be in parallel at the time the DC-DC converter is manufactured. When the input DC voltage is intended to be used in a high voltage range the first plurality of primary windings and the second plurality of primary windings are configured to be in series at the time of manufacture.
US11705804B2

A voltage source converter as well as a method and computer program product for controlling the converter. The converter includes at least one phase leg connected between a first DC terminal having a first voltage and a second DC terminal having a second voltage, the phase leg including an upper arm and a lower arm with cells, where a junction between the arms is connected to a corresponding AC terminal. The converter also includes a control unit configured to control the cells to output a train of pulses of trapezoidal shape where the generation of a first control signal for a first cell used to initiate a transition between two levels of a pulse coincides with the decision that a transition is to be made.
US11705803B1

A gate driver is configured to drive a normally-on device and a normally-off device coupled in series. The gate driver controls the normally-on device in response to a PWM signal, and to control a normally-off device to maintain ON in normal operations. If an under voltage condition of a negative power supply of a first driver used to drive the normally-on device, or a positive power supply of a second driver used to drive the normally-off device, or an input supply voltage is detected, the normally-off device is controlled to be OFF.
US11705802B2

An integrated circuit for a power supply circuit that includes a transformer and a transistor controlling an inductor current flowing through a primary winding of the transformer. The integrated circuit includes a terminal receiving a voltage corresponding to the voltage of a secondary winding of the transformer when the transistor is in an off-state, a first detection circuit detecting that the inductor current is smaller than a first current value, and a determination circuit determining whether an AC voltage applied to the primary winding of the transformer is a first or second AC voltage, both based on the received voltage in the off-state of the transistor. The integrated circuit is configured to drive the transistor in response to a detection result of the first detection circuit, a determination result of the determination circuit, and an output voltage of the power supply circuit generated from the AC voltage.
US11705795B2

A magnetic levitation motor has a housing, a plurality of stators and a plurality of rotors. The housing has a shaft hole there through, the shaft hole accepting a bearing, the bearing rotatably engages with a rotating shaft that extends from two ends of the housing, and a plurality of fastening portions are disposed on the rotating shaft. A main body section is disposed between at least two of the fastening portions, and the housing having a plurality of dividers to define a plurality of containing spaces. The stator has a fixing disk wrapped with a coil and having a through aperture the fixing disk, and the fixing disk has a plurality of first magnets circularly and radially arranged. The rotor has a moving disk with a toothed hole at a center the moving disk, and the moving disk having a plurality of second magnets arranged circularly and radially.
US11705793B2

A method is presented for producing an arrangement of coil elements for a plug-in coil of an electric machine. The method includes providing a workpiece carrier and producing an arrangement of rod-shaped coil elements for a plug-in coil of an electric machine on the workpiece carrier, wherein the following is respectively provided for the rod-shaped coil elements: accommodating and holding the coil elements by means of a displacement device; supplying the coil element onto the workpiece carrier by means of the displacement device into an assigned proximal position on the workpiece carrier, wherein the coil elements are hereby displaced form a distal position into the assigned proximal position with respect to the workpiece carrier; and transferring the coil elements in the proximal position on the workpiece carrier from the displacement device by a gripping device, which is formed on the workpiece carrier.
US11705792B2

A coil insertion device includes: a pair of delivery jigs respectively formed with slits into which a pair of side portions of a coil that are parallel with each other can be inserted; and a side portion inserting mechanism configured to push out the side portions inserted into the slits from the slits to insert the side portions into slots of a stator core, the slots facing the slits, the side portion inserting mechanism has: pushing blocks inserted into the slits; and a pushing block moving mechanism configured to move the pushing blocks in a depth direction of the slits.
US11705781B2

A system and method of active endturn cooling of an electric motor of a vehicle is provided. The method comprises providing a motor having a coolant nozzle and a cam, and measuring speed, lateral acceleration, and road tilt angle of coolant due to road tilt. The method further comprises calculating coolant angle and coolant acceleration angle based on the road tilt angle and the lateral acceleration if the speed is greater than zero. The method further comprises comparing the coolant angle with a critical angle. The method further comprises calculating a first control angle and a first coolant distance based on the road tilt angle and the lateral acceleration of the vehicle if the acceleration angle is greater than the critical angle. The method further comprises determining a cam position based on the first control angle. The method further comprises moving the cam to the position to move the nozzle and compensate for the lateral acceleration such that coolant drops within a target area of the motor.
US11705779B2

A standby generator includes a standby housing defining a cavity and an internal combustion engine. The engine includes an engine block including a cylinder comprising a piston, an engine housing at least partially covering the engine block, and a crankshaft configured to rotate about a vertical crankshaft axis in response to movement by the piston. The standby generator also includes an alternator configured to generate alternating current electrical power, a controller comprising a rectifier configured to convert the alternating current to a direct current and an inverter configured to convert the direct current to a clean alternating current electrical power, and a transfer switch configured to receive the clean alternating current electrical power from the controller and at least one of grid, solar, or battery power, and configured to supply power to an electrical load. The internal combustion engine, the alternator, and the controller are positioned within the cavity.
US11705778B2

A power tool is provided with a tool housing, a support plate provided within the tool housing, a rear tool cap mounted on a rear end of the tool housing, and a brushless direct-current (BLDC) motor received within the housing. The motor includes a stator assembly having a stator core and stator windings, a front motor bearing supported by the support plate, a rear motor bearing supported by the rear tool cap, and a rotor including a rotor core and a magnet ring mounted around the rotor core. The rotor core defines an annular recess within which at portion of the front bearing and a portion of the support plate are located such that the a radial plane intersects the front bearing, the magnet ring, and the stator core.
US11705769B2

A magnetic gear may include a stator, having a stator core having a plurality of teeth extending toward a rotation shaft and a plurality of coils wound around the plurality of teeth, a rotor, having a rotor core disposed inside the stator and fixed to the rotation shaft and a plurality of permanent magnets attached to the external surface of the rotor core, and a pole-piece unit, having a plurality of first pole pieces and a plurality of second pole pieces arranged radially about the rotation shaft between the stator core and the rotor core such that the plurality of first pole pieces and the plurality of second pole pieces are alternately arranged in a circumferential direction thereof.
US11705768B2

A coil winding for an electric motor, and systems, components, assemblies, and methods thereof, can comprise turns of a predetermined number of electrically conductive wires on a first side of the coil winding twisted together in a clockwise direction; and turns of the predetermined number of the electrically conductive wires on a second side of the coil winding opposite the first side twisted together in a counterclockwise direction.
US11705767B2

A rotor structure, a permanent magnet auxiliary synchronous reluctance motor and an electric vehicle, the rotor structure includes a rotor body and an outer layer permanent magnet. The rotor body is provided with a magnetic steel slot group. The magnetic steel slot group includes an outer layer magnetic steel slot. The outer layer magnetic steel slot includes a plurality of magnetic steel slot segments. At least two of the plurality of magnetic steel slot segments are arranged in a radial direction of the rotor body and are disposed oppositely at both sides of a direct axis of the rotor body. The outer layer permanent magnet is arranged in the magnetic steel slot segment, a length of the outer permanent magnet disposed in the two oppositely arranged magnetic steel slot segments is L, and a maximum distance between the two oppositely arranged magnetic steel slot segments is C, where 0.8×C≤L.
US11705762B2

A method, system and device for controller operation, comprises detecting a change in a state of the controller from a charging state to an operation state. A state of the computing device changes from a controller charging state to a controller operation state in response to detecting the change in the state of the controller. The computing device receives an input from the controller sends a visual indication of the input to a display device. Additionally, a method, system and device for enhanced controller charging, may comprise detecting a change in a controller state from an operation state to a charging state. A computing device determines whether an ignore input is present after detecting the change in controller state and automatically signs out of a user account or automatically goes into a standby mode when the ignore input is not present.
US11705759B2

A wireless charging transmission apparatus by using 3D polyhedral magnetic resonance based on multi-antenna switching includes a magnetic resonance wireless energy transmitting module, a plurality of magnetic resonance transmitting antennas, a plurality of receiving antennas, and a magnetic resonance wireless energy receiving module that are connected in sequence. The magnetic resonance wireless energy transmitting module is configured to convert DC power into RF energy and control an operation mode. The magnetic resonance transmitting antennas are configured to convert the RF energy into a spatially distributed reactive field. The receiving antennas are configured to convert the reactive field into the RF energy. The magnetic resonance wireless energy receiving module is configured to convert the RF energy into DC power and charge or power a load. When one of the transmitting antennas is used as a main transmitting antenna, the rest transmitting antennas are used as relay coupling antennas.
US11705743B2

A system for emergency shutdown of an electric charger in response to a disconnection is presented. The system includes a computing device, wherein the computing device is configured to receive a sensor datum from a sensor, determine a disruption element between a charging connector and an electric vehicle as a function of the sensor datum, and initiate a disconnection protocol as a function of the disruption element.
US11705735B2

A photovoltaic system includes a controller and plurality of photovoltaic strings that are independently controlled. The controller enables some photovoltaic strings to be in a maximum power point tracking state, and the remaining photovoltaic strings to be in a power output limited state. The system implements maximum power point tracking detection so that the maximum power point power and the maximum power point voltage are updated in real time. Further, the working status of the power supply system can be fed back in real time, so that the photovoltaic system can predict the capacity of an energy storage apparatus or regulate charging and discharging of the energy storage apparatus. After a curtailment state ends, the photovoltaic system is relatively quickly restored to the normal working state, so that a loss of generated power is reduced.
US11705725B2

An integrated circuit includes a signal pad, receiving an input signal during a normal mode, and receive an ESD signal during an ESD mode; an internal circuit, processing the input signal during the normal mode; a variable impedance circuit, comprising a first end coupled to the signal pad, a second end coupled to the internal circuit, wherein the variable impedance circuit provides a low or high impedance path between the signal pad and the internal circuit during the normal or ESD mode; and a switch circuit, comprising a first end coupled to a control end of the variable impedance circuit, a second end coupled to a reference voltage terminal, and a control end receiving a node voltage, wherein the switch circuit switches the control end of the variable impedance circuit to have a first specific voltage or be electrically floating during the normal or ESD mode.
US11705724B2

A lightning protection spark gap assembly comprises: a lighting protection spark gap having a first main connection and a second main connection, wherein a first voltage line of a supply network is connectable to the first main connection and a second voltage line of the supply network is connectable to the second main connection; a safety fuse device which is triggerable and which is connectable between the first or second voltage line and the corresponding main connection of the lightning protection spark gap, wherein at least one current path leading via the lighting protection spark gap is formable between the first voltage line and the second voltage line during operation; an indicator device for detecting a current flow in the current path or a corresponding portion of the current flow in the current path and for mechanically or electrically delayed triggering of the safety fuse device.
US11705715B2

The invention relates to a method, electrical circuit arrangements and insulation monitoring devices for an interference-resistant insulation monitoring of an ungrounded power supply system having a converter. Switching-frequent interfering signals, which are caused by operating the converter, are identified and assessed in a measured displacement voltage independently of the detection of a measuring signal in order to derive a switching (off) signal if required. Complementary thereto, an interfering resistance with respect to low-frequency interfering portions generated by the converter is attained by these low-frequency interfering portions being generated from a replica of a pulse width modulation signal of the converter and being suppressed sufficiently via subtraction that a monitoring without gaps (frequency) of the insulation resistance becomes possible.
US11705714B2

A switching apparatus includes first and second electric terminals, and first and second electric branches comprising one or more switching devices. The second electric branch is electrically connected in parallel with said first electric branch between said first and second electric terminals. The switching apparatus comprises a current blocking circuit adapted to block a current along said second branch. The current blocking circuit includes a first switching device of solid-state type and a first electronic circuit electrically connected in parallel to said first switching device of solid-state type. The switching apparatus further comprises a current limiting circuit adapted to limit a current flowing along said second electric branch. Said current limiting circuit is electrically connected in series with said current blocking circuit and it includes a second switching device of solid-state type and a second electronic circuit electrically connected in parallel to said second switching device of solid-state type.
US11705710B2

A splice for a skin-effect effect heating cable. The splice includes a primary shim configured to be shrunk over part of an insulation layer of a first portion of the heating cable, a secondary shim configured to be shrunk part of the insulation layer of a second portion of the heating cable, a connector configured to electrically couple the first portion of the heating cable and the second portion of the heating cable, and an outer cold shrink tube configured to be shrunk over the primary shim, the secondary shim, and the connector.
US11705706B2

A junction box assembly includes an upper housing, a lower housing, a connector assembly and a bolt. The upper housing includes a bolt support. The bolt support is a cylindrical member having a top surface and a through hole. The lower housing includes a bottom through hole. The connector assembly further including a threaded bore. A bolt having a threaded end is disposed in the through hole of the upper housing, the bottom through hole of the lower housing and threadedly engaged with the threaded bore of the connector assembly so as to secure the upper housing, lower housing and connector assembly together. The top surface of the cylindrical member includes a plurality of holes, each of the plurality of holes being closed at a bottom end.
US11705701B2

A cable-jacket removal tool is described. The tool includes cutting unit that provides a cutting cylinder that carries a blade and a die. The blade is adjustable to provide a desired depth of cut into the cable jacket. The die is interchangeable and selectable based on a diameter or gage of cable to be stripped. A drive unit that is adapted to be driven by a common, handheld, battery operated drill is also provided. The drive unit rotates the cutting cylinder and the blade carried thereby about the circumference of the cable. The drill is coupled to the drive unit such that the axis of rotation of the drill and the cutting cylinder are substantially parallel and an operator can easily apply a force on the tool via the drill in a direction substantially parallel to those axes of rotation.
US11705691B2

A light source device includes: a laser diode including an emission end surface for emitting laser light and a rear end surface opposite to the emission end surface; a reflecting member that reflects a portion of the laser light emitted from the emission end surface of the laser diode; a photodetector configured to detect light that is reflected at the reflecting member; and a light-shielding member disposed between the rear end surface of the laser diode and the photodetector, the light-shielding member configured to shield at least a portion of light emitted from the rear end surface of the laser diode.
US11705685B2

The disclosure provides a dispersion management method and apparatus based on non-periodic spectral phase jumps. Precise dispersion is provided by virtue of non-periodic spectral phase jumps, the dispersion can be tuned freely with engineering of the phase jump. A device based on non-periodic spectral phase jump also has a wide working bandwidth and could promote the development of ultrafast optics. The method includes: spatially separating a light pulse with different frequency components, and meanwhile, making the light pulse with the different frequency components propagate in parallel; enabling the light pulse with the different frequency components and propagating in parallel to be incident on a non-periodic phase jump device to obtain non-periodic spectral phase jumps, forming a phase grating effect to obtain two ±1-order diffracted pulses having opposite group delays, and introducing frequency dependent relative delay for the different spectral components in the two diffracted pulses.
US11705683B2

A battery pack power transfer adaptor and a battery pack system that includes a battery pack adaptor. The adaptor enables a battery pack to provide high level power transfers to a variety of devices and to receive high level power transfers from a variety of power sources. The adaptor includes a battery pack interface to enable the adaptor to mechanically and electrically connect to the battery pack. The adaptor is able to transfer power at a variety of levels dependent upon the device to which it is attached.
US11705678B2

An arc prevention system including a jack having a receptacle, with the receptacle having an upper wall, a bottom wall, two opposing side walls and a back wall between the two opposing side walls, a sensor unit positioned on the back wall of the receptacle, where the sensor unit is positioned on the back wall of the receptacle such that the sensor unit engages a plug inserted into the receptacle.
US11705675B2

A cable connector includes a number of cables and an electrical connector. Each cable includes a core wire, an insulating layer wrapped on the core wire and a shielding layer wrapped on the insulating layer. The electrical connector includes an insulating body, a number of conductive terminals and a shielding shell. Each conductive terminal includes a contact portion for mating with a mating connector and a tail portion connected with the core wire. The cable connector further includes a ground shield mounted to the cables. The ground shield is connected with the shielding layers of the cables, and the ground shield is connected with the shielding shell. Compared with the prior art, the present disclosure improves the shielding performance of the cable connector by providing connecting the ground shield, the shielding layers and the shielding shell together.
US11705674B2

Provided are a metal housing and a connector. The metal housing is configured to accommodate an insulation body and the metal housing includes a first half housing on which a first overlapping portion is disposed and a second half housing on which a second overlapping portion is disposed. The first overlapping portion is overlapped with and connected to the second overlapping portion when the metal housing accommodates the insulation body. With the above-mentioned structure, the metal housing is not easily deformed when being pressed and struck by external forces. The connector includes an electrical connection part and an insulation body which accommodates the electrical connection part. The connector further includes the above-mentioned metal housing which accommodates the insulation body. As the above-mentioned metal housing is used for accommodating the insulation body and the electrical connection part, the connector has better capabilities of anti-press and anti-strike.
US11705673B2

The present disclosure discloses a high-speed connector including an insulating body and a terminal module. The terminal module includes a number of terminal groups. Each terminal group includes a number of ground terminals, a number of signal terminals and a shielding piece. The ground terminal includes a ground pin. The signal terminal includes a signal pin. The shielding piece includes a number of convex portions and a number of surrounding portions. The ground pins and the signal pins are distributed in a staggered manner. At least one ground pin is in contact with the convex portion of the shielding piece. The surrounding portion surrounds the signal pins. When the ground pins and the signal pins are no longer in the same plane or the same row, the shielding piece can prevent cross-talk among signals, thereby improving the transmission quality.
US11705670B2

A backplane connector includes a housing, a number of terminal modules, a metal shielding surrounding portion and a mounting block. The housing includes a base, a receiving groove and a number of insulating protrusions integrally extending from the base. The terminal module includes a first signal terminal and a second signal terminal. The first signal terminal has a first mounting foot. The second signal terminal has a second mounting foot. The metal shield surrounding member includes a first tail portion, a second tail portion and a hollow portion sleeved on the insulating protrusion. The mounting block is received in the receiving groove. As a result, the shielding effect of the backplane connector is improved.
US11705667B2

Terminal (1), in particular screw or connecting terminal, having a spring force terminal connection (2) with at least one conductor terminal point (K) for electrical connection of at least one conductor, an insulating material housing (6) which at least partially accommodates the spring force terminal connection (2), for each conductor terminal point (K) a conductor introduction channel (60) which extends in a conductor introduction direction (E) from the outside toward the conductor terminal point (K), and for each conductor terminal point (K) a release lever (5) which is mounted in the insulating material housing (6) pivotably about a pivot axis (A) extending transverse to the conductor introduction direction (E), in order to interact with an actuating portion (52) by pivoting of the release lever (5) with the spring force terminal connection (2) for optional opening of the conductor terminal point (K). The release lever (5) has two lever arm portions (50) which are spaced apart from one another and which are immersed on both sides of the conductor introduction channel (60) at least partially into the insulating material housing (6). The lever arm portions (50) have in each case a guide portion (53) which at least partially delimit the conductor introduction channel (60) on both sides at least in the case of a conductor terminal point (K) opened by the release lever (5). According to a first aspect, the release lever (5) has a connection portion (56) which extends along the pivot axis (A) between the lever arm portions (50) and connects these to one another. According to an alternative or additional second aspect, the insulating material housing (6) has guide wall portions (63) which, together with the guide portions (53), at least partially delimit the conductor introduction channel (60), wherein the guide portions (53) are separated from the guide wall portions (63) by a gap (S).
US11705666B2

Systems and methods are provided for water resistant connectors. A male connector includes a rib or a draft angle that creates a seal when engaged with a female connector. A male connector includes an overmold that includes or is made of a thermoplastic elastomer. Male or female connectors include molds that include or are made of a thermoplastic polymer, such as polypropylene. A female connector includes spring contacts that fit within individual pockets of the female connector.
US11705659B2

A split housing connector assembly provides integrated terminal position assurance and an independent secondary lock and includes a nosepiece and a rear housing. In a pre-lock configuration, a plurality of wire terminal bays are aligned to allow insertion of wire terminals and wherein in a locked configuration the rear housing is displaced relative to the nosepiece offsetting the wire terminal bays and blocking removal of the wire terminals. The rear housing engages the nosepiece along a cam track to guide relative movement during assembly.
US11705638B2

A communication device includes a first lens, a feeder array, and control circuitry communicatively coupled to the feeder array. The first lens is associated with a defined shape, which further exhibits a defined distribution of dielectric constant. The feeder array includes a plurality of antenna elements that are positioned in proximity to the first lens. The control circuitry equalizes a distribution of a gain from the received first lens-guided beam of input RF signals across the feeder array and different scan directions of the plurality of antenna elements. The equalized distribution of gain is based on the defined distribution of dielectric constant within the first lens and the proximity of the feeder array to the first lens.
US11705635B2

A circularly polarized, multiband, and wideband antenna and can communicate with a GPS system. The antenna may include a driving element, first, second and third conductive parasitic elements electrically connected to the driving element, and a ground plane. The parasitic elements are provided with different lengths to provide for wider band operation with multiple resonant frequencies. The radiated wave has a low angle of propagation and travels for at least 1-2 miles.
US11705633B1

A reactance cancelling radio frequency (RF) circuit array is disclosed. The reactance cancelling RF circuit array includes multiple RF circuits each coupled to one or two adjacent RF circuits by one or two pairs of coupling mediums each having a respective length less than one-quarter wavelength. In one aspect, an RF input signal is first split across the RF circuits and then combined to form an RF output signal. As a result, each RF circuit requires a lower power handling capability to process a portion of the RF input signal. In another aspect, each pair of the coupling mediums can cause reactance cancellation in each reactance-cancelling pair of the RF circuits. By coupling the RF circuits via the coupling mediums and enabling splitting-combining among the RF circuits, it is possible to miniaturize the reactance cancelling RF circuit array for improved performance across a wide frequency spectrum.
US11705630B1

An example apparatus includes a planar five bar linkage having a ground link and an endpoint. A feed horn is attached at or near the endpoint of the planar five bar linkage. A first motor is attached to a first side of the ground link to move the endpoint and a second motor attached to the second side of the ground link to move the endpoint.
US11705625B2

Disclosed herein is an antenna device that includes a first molded substrate having first and second surfaces opposite to each other, a second molded substrate having third and fourth surfaces opposite to each other, a first electrode formed on the first surface of the first molded substrate, a feed electrode formed on the second surface of the first molded substrate so as to overlap the first electrode in a plan view, and a first ground electrode formed on the third surface of the second molded substrate. The first and second molded substrates overlap each other such that the second surface of the first molded substrate and the fourth surface of the second molded substrate face each other.
US11705624B2

A wiring board includes: a substrate having transparency; a plurality of first wirings which are arranged on an upper surface of the substrate and extend in a first direction and each of which has a back surface in contact with the substrate and a front surface facing an opposite side of the back surface; and has a back surface in contact with the substrate and a front surface facing an opposite side of the back surface. The first wiring has a pair of side surfaces which extend in the first direction and are adjacent to the back surface of the first wiring, and each of the pair of side surfaces of the second wiring is recessed inward. The second wiring has a pair of side surfaces which extend in the second direction and are adjacent to the back surface of the second wiring.
US11705622B2

In one example, an antenna system is described. The antenna system includes a primary antenna on an aircraft. The primary antenna is mechanically steerable and has an asymmetric antenna beam pattern with a narrow beamwidth axis and a wide beamwidth axis at boresight. The antenna system also includes a secondary antenna on the aircraft, the secondary antenna including an array of antenna elements. The antenna system also includes an antenna selection system to control communication of a signal between the aircraft and a target satellite via the primary antenna and the secondary antenna. The antenna selection system switches communication of the signal from the primary antenna to the secondary antenna when a performance characteristic for communication with the target satellite satisfies a threshold due to a position of the aircraft relative to the target satellite.
US11705600B2

An electronic torque wrench with a battery receptacle adapted to receive either a unitary battery pack or a battery tray containing separate batteries inside. The battery tray can receive conventional batteries such as AA, AAA, C, D or 9-volt sized batteries, and the battery tray and unitary battery can be constructed of a similar geometry to fit within the battery receptacle. The battery tray and unitary pack can include an outwardly-extending protrusion that is received within a groove of the battery receptacle. In this manner, only the specially-designed battery tray and pack are capable of coupling with the receptacle.
US11705596B2

A method of manufacturing a battery, in particular a button battery, including a case, provided with a container and a cap, and a polymer gasket, in particular made of polypropylene, compressed and bonded between the container and the cap. The method successively includes a step of implanting a silicatised layer by tribochemical sand blasting on all or part of the surface of the gasket, a step of adding a layer of adhesive to the surface of the gasket including the silicatised layer and/or on all or part of the surface of the container and of the surface of the cap intended to be joined to the gasket, a step of assembling the case with the gasket positioned by compression and bonding with the layer of adhesive between the container and the cap.
US11705595B2

Provided are a pouch case for a pouch type secondary battery in which one corner is in close contact with a cooling plate and a pouch type secondary battery including the same. In the pouch case, by controlling a shape relation among a forming portion formed to have a non-zero depth determined in advance at a center to accommodate one side of an electrode assembly, a receiving portion in surface contact with a side surface of the electrode assembly at the time of sealing the pouch case, and a sealing portion for sealing opposing ends of the forming portion and the electrode assembly, a size of a sealing protrusion formed after the electrode assembly is packaged through mechanical properties of a metal laminate sheet and a simplified die and punch may be minimized.
US11705591B2

A method of detecting a thermal event associated with a battery assembly of an electrified vehicle includes, among other things, obtaining a temperature reading from a sensor associated with an area of the battery assembly, assessing whether the sensor is flagged with a first identifier or a second identifier. The first identifier indicates that the temperature reading is reliable. The second identifier indicates that the temperature reading is unreliable. If the sensor is flagged with the first identifier, the method detects a thermal event associated with the battery assembly based on the temperature reading from the sensor.
US11705586B2

A dendrite resistant battery may include a first electrode, a second electrode, and an electrolyte interposed between the first electrode and the second electrode. The dendrite resistant battery may further include at least one acoustic wave device configured to generate a plurality of acoustic waves during a charging of the battery. The charging of the battery may trigger cations from the first electrode to travel through the electrolyte and deposit on the second electrode. The plurality of acoustic waves may agitate the electrolyte to at least homogenize a distribution of cations in the electrolyte. The homogenization of the distribution of cations may prevent a formation of dendrites on the second electrode by at least increasing a uniformity of the deposit of cations on the second electrode. Related methods and systems for battery management are also provided.
US11705584B2

Alkaline electrochemical cells are provided, wherein an organic additive is included in at least one component of the cell in order to increase electron discharge of the cathode, so as to improve the specific capacity of the cell. Methods for preparing such cells are also provided.
US11705582B2

An exemplary hybrid battery separator is provided with a porous sheet with a folded bottom edge and joined lateral edges that form a pocket. The folded bottom edge may have one or more openings or slits. The hybrid separators of the present disclosure are particularly useful for flat-plate cycling batteries. The separators of the present disclosure may effectively enhance the battery re-chargeability and the backup time. In addition, the separators of the present disclosure may contribute to the reduction of water loss in the battery, lowering the maintenance needs in service. It is expected that batteries having the separators of the present disclosure may be useful in various applications, such as in inverters, golf carts, as well as solar and traction applications.
US11705572B2

A fuel cell includes a membrane electrode assembly having electrodes disposed on both surfaces of an electrolyte membrane, a gas diffusion layer stacked on one surface of the membrane electrode assembly, a resin frame assembled onto the one surface of the membrane electrode assembly so as to surround the outer periphery of the gas diffusion layer apart from the outer periphery of the gas diffusion layer, and a resin sheet disposed between the gas diffusion layer and the resin frame, and the membrane electrode assembly so as to fill a space between the inner periphery of the resin frame and the outer periphery of the gas diffusion layer.
US11705549B2

Disclosed is a transparent anode thin film comprising a transparent anode active material layer, wherein the transparent anode active material layer comprises a Si-based anode active material having a composition represented by the following [Chemical Formula 1]: SiNx  [Chemical Formula 1] (wherein 0
US11705548B2

An apparatus with micro devices includes a circuit substrate, at least one micro device, and at least one light guide structure. The micro device is disposed on the circuit substrate. The micro device has a top surface and a bottom surface opposite to each other, a peripheral surface connected with the top surface and the bottom surface, a first-type electrode, and a second-type electrode. The light guide structure is disposed on the circuit substrate and is not in direct contact with the first-type electrode and the second-type electrode. The light guide structure includes at least one connecting portion and at least one holding portion. The connecting portion is disposed on an edge of the top surface of the micro device. An orthographic projection area of the light guide structure on the top surface is smaller than an area of the top surface.
US11705522B2

A semiconductor device having a reduced amount of oxygen vacancy in a channel formation region of an oxide semiconductor is provided. Further, a semiconductor device which includes an oxide semiconductor and has improved electric characteristics is provided. Furthermore, a methods for manufacturing the semiconductor device is provided. An oxide semiconductor film is formed; a conductive film is formed over the oxide semiconductor film at the same time as forming a low-resistance region between the oxide semiconductor film and the conductive film; the conductive film is processed to form a source electrode and a drain electrode; and oxygen is added to the low-resistance region between the source electrode and the drain electrode, so that a channel formation region having a higher resistance than the low-resistance region is formed and a first low-resistance region and a second low-resistance region between which the channel formation region is positioned are formed.
US11705515B2

In some embodiments, the present disclosure relates to an integrated chip that includes a source region and a drain region arranged over and/or within a substrate. Further, a shallow trench isolation (STI) structure is arranged within the substrate and between the source and drain regions. A gate electrode is arranged over the substrate, over the STI structure, and between the source and drain regions. A portion of the gate electrode extends into the STI structure such that a bottommost surface of the portion of the gate electrode is arranged between a topmost surface of the STI structure and a bottommost surface of the STI structure.
US11705514B2

A MOS transistor structure is provided. The MOS transistor structure includes a semiconductor substrate having an active area including a first edge and a second edge opposite thereto. A gate layer is disposed on the active area of the semiconductor substrate and has a first edge extending across the first and second edges of the active area. A source region having a first conductivity type is in the active area at a side of the first edge of the gate layer and between the first and second edges of the active area. First and second heavily doped regions of a second conductivity type are in the active area adjacent to the first and second edges thereof, respectively, and spaced apart from each other by the source region.
US11705507B2

A semiconductor device includes a semiconductor substrate, a semiconductor fin extending from the semiconductor substrate, a gate structure extending across the semiconductor fin, and source/drain semiconductor layers on opposite sides of the gate structure. The source/drain semiconductor layers each have a first thickness over a top side of the semiconductor fin and a second thickness over a lateral side of the semiconductor fin. The first thickness and the second thickness have a difference smaller than about 20 percent of the first thickness.
US11705506B2

A method of manufacturing a semiconductor device includes: forming a trench in a first side of a semiconductor layer, the semiconductor layer including a drift zone of a first conductivity; forming a drain region of the first conductivity type in the first side of the semiconductor layer and laterally adjoining the drift zone; forming a body region of a second conductivity type opposite the first conductivity type and laterally adjoining the drift zone at a side of the drift zone opposite the drain region; and forming source regions of the first conductivity type and body contact regions of the second conductivity type in a sidewall of the trench and arranged in an alternating manner along a length of the trench, using a dopant diffusion process which includes diffusing dopants of both conductivity types from oppositely-doped dopant source layers which are in contact with different regions of the sidewall.
US11705502B2

The present disclosure relates to a semiconductor device including a substrate and a pair of spacers on the substrate. Each spacer of the pair of spacers includes an upper portion having a first width and a lower portion under the upper portion and having a second width different from the first width. The semiconductor device further includes a gate structure between the pair of spacers. The gate structure has an upper gate length and a lower gate length that is different from the upper gate length.
US11705493B2

A MOS transistor, in particular a vertical channel transistor, includes a semiconductor body housing a body region, a source region, a drain electrode and gate electrodes. The gate electrodes extend in corresponding recesses which are symmetrical with respect to an axis of symmetry of the semiconductor body. The transistor also has spacers which are also symmetrical with respect to the axis of symmetry. A source electrode extends in electrical contact with the source region at a surface portion of the semiconductor body surrounded by the spacers and is in particular adjacent to the spacers. During manufacture the spacers are used to form in an auto-aligning way the source electrode which is symmetrical with respect to the axis of symmetry and equidistant from the gate electrodes.
US11705492B2

A first gate and a second gate are formed on a substrate with a gap between the first and second gates. The first gate has a first sidewall. The second gate has a second sidewall directly facing the first sidewall. A first sidewall spacer is disposed on the first sidewall. A second sidewall spacer is disposed on the second sidewall. A contact etch stop layer is deposited on the first and second gates and on the first and second sidewall spacers. The contact etch stop layer is subjected to a tilt-angle plasma etching process to trim a corner portion of the contact etch stop layer. An inter-layer dielectric layer is then deposited on the contact etch stop layer and into the gap.
US11705491B2

A method comprises forming a gate structure over a semiconductor substrate; etching back the gate structure; forming a gate dielectric cap over the etched back gate structure; depositing an etch-resistant layer over the gate dielectric cap; depositing a contact etch stop layer over the gate dielectric cap and an interlayer dielectric (ILD) layer over the contact etch stop layer; performing a first etching process to form a gate contact opening extending through the ILD layer and terminating prior to reaching the etch-resistant layer; performing a second etching process to deepen the gate contact opening, wherein the second etching process etches the etch-resistant layer at a slower etch rate than etching the contact etch stop layer; and forming a gate contact in the deepened gate contact opening.
US11705490B2

Exemplary methods of forming a semiconductor structure may include forming a doped silicon layer on a semiconductor substrate. A level of doping may be increased at an increasing distance from the semiconductor substrate. The methods may include etching the doped silicon layer to define a trench extending to the semiconductor substrate. The doped silicon layer may define a sloping sidewall of the trench. The trench may be characterized by a depth of greater than or about 30 μm. The methods may include lining the trench with a first oxide material. The methods may include depositing a second oxide material within the trench. The methods may include forming a contact to produce a power device.
US11705488B2

A device includes a semiconductor substrate, a source feature and a drain feature over the semiconductor substrate, a stack of semiconductor layers interposed between the source feature and the drain feature, a gate portion, and an inner spacer of a dielectric material. The gate portion is between two vertically adjacent layers of the stack of semiconductor layers and between the source feature and the drain feature. Moreover, the gate portion has a first sidewall surface and a second sidewall surface opposing the first sidewall surface. The inner spacer is on the first sidewall surface and between the gate portion and the drain feature. The second sidewall surface is in direct contact with the source feature.
US11705485B2

A lateral double-diffused metal-oxide-semiconductor (LDMOS) transistor including a breakdown voltage clamp includes a drain n+ region, a source n+ region, a gate, and a p-type reduced surface field (PRSF) layer including one or more bridge portions. Each of the one or more bridge portions extends below the drain n+ region in a thickness direction. Another LDMOS transistor includes a drain n+ region, a source n+ region, a gate, an n-type reduced surface field (NRSF) layer disposed between the source n+ region and the drain n+ region in a lateral direction, a PRSF layer disposed below the NRSF layer in a thickness direction orthogonal to the lateral direction, and a p-type buried layer (PBL) disposed below the PRSF layer in the thickness direction. The drain n+ region is disposed over the PBL in the thickness direction.
US11705484B2

A nanowire structure that includes a conductive layer; conductive wires having first ends that contact the conductive layer and second ends that protrude from the conductive layer; and a lateral bridge layer that connects laterally a number of the conductive wires to provide a substantially uniform spacing between the conductive wires.
US11705483B2

A capacitor includes a lower electrode including a first metal material and having a first crystal size in a range of a few nanometers, a dielectric layer covering the lower electrode and having a second crystal size that is a value of a crystal expansion ratio times the first crystal size and an upper electrode including a second metal material and covering the dielectric layer. The upper electrode has a third crystal size smaller than the second crystal size.
US11705481B2

Provided is a display device including a substrate, a first electrode disposed on the substrate, a second electrode disposed on the substrate and spaced apart from the first electrode, a plurality of first sub-insulating layers extending in a first direction, disposed on the substrate and on the first and second electrodes, and arranged in a second direction crossing the first direction, and a plurality of light emitting elements disposed between the first sub-insulating layers and electrically connected to the first electrode and the second electrode.
US11705480B2

An optoelectronic device comprises an epitaxial stack, comprising a first semiconductor layer, an active layer, and a second semiconductor layer; a trench exposing a portion of the first semiconductor layer; a first insulating layer formed on a side wall of the trench to electrically insulate from the active layer and the second semiconductor layer; a first electrode formed on the trench; a second electrode formed on the second semiconductor layer; a supporting device covering the epitaxial stack; an optical layer covering the first electrode and the second electrode, comprising a plurality of openings corresponding to positions of the first electrodes and the second electrodes; a fifth electrode electrically connected with the first electrode; and a sixth electrode electrically connected with the second electrode, wherein the fifth electrode and the sixth electrode each comprises a side comprising a length longer that of an edge of the epitaxial stack.
US11705470B2

The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a photodetector arranged within a substrate. The substrate has surfaces defining one or more protrusions arranged along a first side of the substrate over the photodetector. One or more isolation structures are arranged within one or more trenches defined by sidewalls of the substrate arranged on opposing sides of the photodetector. The one or more trenches extend from the first side of the substrate to within the substrate. The one or more isolation structures respectively include a reflective medium configured to reflect electromagnetic radiation.
US11705462B2

An electronic device includes a substrate, multiple transversal signal lines, a first vertical signal line, a second vertical signal line, a shielding wire, and multiple pixel structures. The first vertical signal line is intersected with the transversal signal lines. The second vertical signal line is intersected with the transversal signal lines and connected to one of the transversal signal lines. An orthogonal projection of the shielding wire on the substrate is located between an orthogonal projection of the first vertical signal line and an orthogonal projection of the second vertical signal line on the substrate. One of the pixel structures is surrounded by a corresponding one of the transversal signal lines and the second vertical signal line and includes an active device. A gate and a source of the active device is electrically connected to the corresponding one transversal signal line and the first vertical signal line respectively.
US11705458B2

Single gate and dual gate FinFET devices suitable for use in an SRAM memory array have respective fins, source regions, and drain regions that are formed from portions of a single, contiguous layer on the semiconductor substrate, so that STI is unnecessary. Pairs of FinFETs can be configured as dependent-gate devices wherein adjacent channels are controlled by a common gate, or as independent-gate devices wherein one channel is controlled by two gates. Metal interconnects coupling a plurality of the FinFET devices are made of a same material as the gate electrodes. Such structural and material commonalities help to reduce costs of manufacturing high-density memory arrays.
US11705450B2

Semiconductor structures and methods for forming a semiconductor structure are provided. The method includes forming a first active semiconductor region disposed in a first vertical level of the semiconductor structure, forming a second active semiconductor region disposed in the first vertical level, where the second active semiconductor region is separated from the first active semiconductor region by a distance in a first direction, forming a first conductive structure disposed in a second vertical level that is adjacent to the first vertical level. The first conductive structure extends along the first direction and electrically couples the first active semiconductor region to the second active semiconductor region.
US11705441B2

A micro LED display device including a display substrate, a plurality of conductive pad pairs and a plurality of micro light emitting elements is provided. The display substrate has a first arranging area, a splicing area connected to the first arranging area, and a second arranging area connected to the splicing area, wherein the splicing area is located between the first arranging area and the second arranging area. The conductive pad pairs are disposed on the display substrate in an array with the same pitch. The micro light emitting elements are disposed on the display substrate and are electrically bonded to the conductive pad pairs. A manufacturing method of the micro LED display device is also provided.
US11705438B2

A semiconductor device of embodiments includes an insulating substrate, a first main terminal, a second main terminal, an output terminal, a first metal layer connected to the first main terminal, a second metal layer connected to the second main terminal, a third metal layer disposed between the first metal layer and the second metal layer and connected to the output terminal, a first semiconductor chip and a second semiconductor chip provided on the first metal layer, a third semiconductor chip and a fourth semiconductor chip provided on the third metal layer, and a conductive member on the second metal layer. Then, the second metal layer includes a slit. The conductive member is provided between the end portion of the second metal layer and the slit.
US11705435B2

A device includes a lower semiconductor substrate, a lower gate structure on the lower semiconductor substrate, the lower gate structure comprises a lower gate electrode, a lower interlayer insulating film on the lower semiconductor substrate, an upper semiconductor substrate on the lower interlayer insulating film, an upper gate structure on the upper semiconductor substrate, and an upper interlayer insulating film on the lower interlayer insulating film, the upper interlayer insulating film covers sidewalls of the upper semiconductor substrate The upper gate structure comprises an upper gate electrode extending in a first direction and gate spacers along sidewalls of the upper gate electrode. The upper gate electrode comprises long sidewalls extending in the first direction and short sidewalls in a second direction The gate spacers are on the long sidewalls of the upper gate electrode and are not disposed on the short sidewalls of the upper gate electrode.
US11705432B2

Systems, apparatuses, and methods using wire bonds and direct chip attachment (DCA) features in stacked die packages are described. A stacked die package includes a substrate and at least a first semiconductor die and a second semiconductor die that are vertically stacked above the substrate. An active surface of the first semiconductor die faces an upper surface of the substrate and the first semiconductor die is operably coupled to the substrate by direct chip attachment DCA features. A back side surface of the second semiconductor die faces a back side surface of the first semiconductor die. The second semiconductor die is operably coupled to the substrate by wire bonds extending between an active surface thereof and the upper surface of the substrate.
US11705427B2

An electronic device includes a substrate having contact pads disposed thereon and traces interconnecting the contact pads. A first integrated circuit (IC) die is mounted on the substrate and includes a predefined set of circuit components arranged on the first IC die in a first geometrical pattern, which is non-symmetrical under reflection about a given axis in a plane of the die. A second IC die is mounted on the substrate and includes the predefined set of circuit components arranged on the second IC die in a second geometrical pattern, which is a mirror image of the first geometrical pattern with respect to the given axis.
US11705412B2

An electronic device package includes a first substrate, a second substrate and a conductive layer. The first substrate includes a first bonding pad, and a cavity exposing the first bonding pad. The second substrate is laminated on the first substrate. The second substrate includes a second bonding pad at least partially inserting into the cavity of the first substrate. The conductive layer is disposed in the cavity and at least between the first bonding pad and the second bonding pad to connect the first bonding pad and the second bonding pad.
US11705406B2

A package structure is provided. The package structure includes a redistribution structure and a first semiconductor die over the redistribution structure. The package structure also includes a wall structure laterally surrounding the first semiconductor die and the wall structure includes a plurality of partitions separated from one another. The package structure also includes an underfill material between the wall structure and the first semiconductor die. The package structure also includes a molding compound encapsulating the wall structure and the underfill material.
US11705404B2

In one embodiment, a semiconductor device includes a substrate, and a plurality of insulating layers provided on the substrate. The device further includes a plurality of electrode layers provided on the substrate alternately with the plurality of insulating layers and including metal atoms and impurity atoms different from the metal atoms, lattice spacing between the metal atoms in the electrode layers being greater than lattice spacing between the metal atoms in an elemental substance of the metal atoms.
US11705403B2

Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes tiers of respective memory cells and control gates, the tier located one over another over a substrate, the control gates including a control gate closest to the substrate, the control gates including respective portions forming a staircase structure; conductive contacts contacting the control gates at a location of the staircase structure, the conductive contacts including a conductive contact contacting the control gate; a dielectric structure located on sidewalls of the control gates; and support structures adjacent the conductive contacts and having lengths extending vertically from the substrate, the support structures including a support structure closest to the conductive contact, the support structure located at a distance from an edge of the dielectric structure, wherein a ratio of a width of the support structure over the distance is ranging from 1.6 to 2.0.
US11705402B2

A method of manufacturing a semiconductor memory device includes processing a first substrate including a first align mark and a first structure, processing a second substrate including a second align mark and a second structure, orientating the first substrate and the second substrate such that the first structure and the second structure face each other, and controlling alignment between the first structure and the second structure by using the first align mark and the second align mark to couple the first structure with the second structure.
US11705392B2

The present disclosure provides an electronic device including a substrate, a conductive pad, a chip and an insulating layer. The conductive pad is disposed on the substrate. The chip is disposed on the conductive pad. The insulating layer is disposed between the conductive pad and the chip, wherein the insulating layer includes an opening, and the chip is electrically connected to the conductive pad through the opening. An outline of the opening includes a plurality of curved corners in a normal direction of the substrate.
US11705387B2

A semiconductor package assembly includes a carrier with a die attach surface and a contact pad separated from the die attach surface, a semiconductor die mounted on the die attach surface, the semiconductor die having a front side metallization that faces away from the die attach surface, an interconnect ribbon attached to the semiconductor die and the contact pad such that the interconnect ribbon electrically connects the front side metallization to the contact pad, and an electrically insulating encapsulant body that encapsulates the semiconductor die and at least part of the interconnect ribbon. The interconnect ribbon includes a layer stack of a first metal layer and a second layer formed on top of the first metal layer. The first metal layer includes a different metal as the second metal layer. The first metal layer faces the front side metallization.
US11705380B2

The present disclosure provides a method for fabricating a semiconductor device including performing a bonding process to bond a second die onto a first die, forming a first mask layer on the second die, forming a first opening along the first mask layer and the second die, and extending to the first die, forming isolation layers on sidewalls of the first opening, forming protection layers covering upper portions of the isolation layers, and forming a conductive filler layer in the first opening.
US11705378B2

A semiconductor package includes a circuit board structure, a first redistribution layer structure and first bonding elements. The circuit board structure includes outermost first conductive patterns and a first mask layer adjacent to the outermost first conductive patterns. The first redistribution layer structure is disposed over the circuit board structure. The first bonding elements are disposed between and electrically connected to the first redistribution layer structure and the outermost first conductive patterns of the circuit board structure. In some embodiments, at least one of the first bonding elements covers a top and a sidewall of the corresponding outermost first conductive pattern.
US11705374B2

A substrate processing method includes performing a post-processing on a substrate subjected to a pre-processing, in the multiple chambers, acquiring a characteristic value of the substrate after the post-processing for respective chambers, calculating an actual value being an estimated value of the characteristic value when a processing condition of the post-processing is adjusted such that a difference between the characteristic value and a target value becomes small, acquiring a correction residual amount being a difference between the actual value and the target value for each chamber, calculating an average value of correction residual amounts of all of the chambers, correcting the pre-processing condition based on the average of the correction residual amounts, correcting the post-processing condition for each chamber based on the average of the correction residual amounts and the correction residual amount for each chamber; and performing the pre-processing and the post-processing based on the corrected conditions.
US11705372B2

The embodiments described herein are directed to a method for reducing fin oxidation during the formation of fin isolation regions. The method includes providing a semiconductor substrate with an n-doped region and a p-doped region formed on a top portion of the semiconductor substrate; epitaxially growing a first layer on the p-doped region; epitaxially growing a second layer different from the first layer on the n-doped region; epitaxially growing a third layer on top surfaces of the first and second layers, where the third layer is thinner than the first and second layers. The method further includes etching the first, second, and third layers to form fin structures on the semiconductor substrate and forming an isolation region between the fin structures.
US11705366B2

Methods of etching a metal layer and a metal-containing barrier layer to a predetermined depth are described. In some embodiments, the metal layer and metal-containing barrier layer are formed on a substrate with a first dielectric and a second dielectric thereon. The metal layer and the metal-containing barrier layer formed within a feature in the first dielectric and the second dielectric. In some embodiments, the metal layer and metal-containing barrier layer can be sequentially etched from a feature formed in a dielectric material. In some embodiments, the sidewalls of the feature formed in a dielectric material are passivated to change the adhesion properties of the dielectric material.
US11705352B2

The present application relates to a base frame of a substrate carrier, including a first vertical rod and a second vertical rod; a plurality of cross rods, being arranged along the lengthwise direction of the first vertical rod and the second vertical rod, and being connected between the first vertical rod and the second vertical rod; a first vertical rod extension, being connected to an end of the first vertical rod from which a substrate enters; and a second vertical rod extension, being connected to an end of the second vertical rod from which the substrate enters; and the first vertical rod extension and the second vertical rod extension are configured to accommodate at least one set of rollers for conveying the substrate therebetween.
US11705351B2

Systems and methods are described for integrated decomposition and scanning of a semiconducting wafer, where a single chamber is utilized for decomposition and scanning of the wafer of interest.
US11705347B2

A thermal regulator for controlling temperature of a substantially circular stage comprising a plurality of first segments and a plurality of second segments in a radial direction and in a circumferential direction, each of the first segments and at least two adjacent second segments defining a set of segments, the thermal regulator includes heaters disposed in the first and second segments, respectively, thermal sensors disposed in the first segments, respectively, a controller configured to control the heaters in response to temperatures determined by the thermal sensors, and a segment switch to switch the second segments to be controlled in conjunction with the first segment in each set of segments.
US11705344B2

A technique capable of shortening process time for plasma cleaning is provided. A method of manufacturing a semiconductor device includes a step of preparing a substrate including a plurality of device regions each including a semiconductor chip electrically connected to a plurality of terminals formed on a main surface by a wire, a step of delivering the substrate while emitting plasma generated in atmospheric pressure to the main surface of the substrate, a step of delivering the substrate while capturing an image of a region of the main surface of the substrate and a step of forming a sealing body by sealing the semiconductor chip and the wire with a resin.
US11705334B2

A semiconductor device includes a semiconductor part; first and second electrodes, the semiconductor part being provided between the first and second electrodes; a control electrode selectively provided between the semiconductor part and the second electrode; and a contacting part electrically connecting the semiconductor part and the second electrode. The semiconductor part includes a first layer of a first conductivity type, a second layer of a second conductivity type provided between the first layer and the second electrode, a third layer of the first conductivity type selectively provided between the second layer and the second electrode, and a fourth layer of the second conductivity type selectively provided between the second layer and the second electrode. The contacting part includes a first semiconductor portion of the first conductivity type contacting the third layer, and a second semiconductor portion of the second conductivity type contacting the fourth layer.
US11705317B2

A method of mass spectrometry is disclosed comprising: a) providing temporally separated precursor ions; b) mass analyzing separated precursor ions, and/or product ions derived therefrom, during a plurality of sequential acquisition periods, wherein the value of an operational parameter of the spectrometer is varied during the different acquisition periods; c) storing the spectral data obtained in each acquisition period along with its respective value of the operational parameter; d) interrogating the stored spectral data and determining which of the spectral data for a precursor ion or product ions meets a predetermined criterion, and determining the value of the operational parameter that provides this mass spectral data as a target operational parameter value; and e) mass analyzing again the precursor or product ions whilst the operational parameter is set to the target operational parameter value.
US11705315B2

A sputtering apparatus is provided. The sputtering apparatus comprises a vacuum chamber in which a substrate is located; a target having one surface facing an inner surface of the vacuum chamber; a gas supplier configured to supply a gas for generating plasma in the vacuum chamber; a power supplier configured to supply a power to the target to generate the plasma, sputter the target, and form a film on the substrate; and an abnormality detector configured to detect abnormality caused by a temperature of the target.
US11705314B2

Provided is a generator including a power amplifier, at least one sampler, an RF output, a signal generator, a controller including a digital control portion and an analogue control portion, an analogue feedback path between the at least one sampler and the controller enabling an analogue signal representation of a signal to be provided to the controller, and a digital feedback path between the at least one sampler and the controller enabling a digital signal representation of the signal to be provided to the controller. The controller is configured to adjust the RF signal at the RF output from a first state into a second state based on the analogue signal representation and/or the digital signal representation.
US11705307B2

A plasma system and a filter device are provided. In the system, an area surrounded by a dielectric window is configured as a first chamber for accommodating plasma. A first adapter is arranged under the dielectric window. An area surrounded by the first adapter is configured as a second chamber. A lower electrode platform is placed in the second chamber to carry a workpiece. A filter member of the filter device is placed at an intersection of the first chamber and the second chamber. The filter member includes through-holes configured to filter ions from the plasma. A first extension member extends from the filter member in a first direction and is placed over the first adapter. A second extension member extends from a position of the filter member adjacent to the first extension member to an inner side of the first adapter.
US11705302B2

A disclosed substrate support includes a base and first and second supports. A refrigerant flow path is formed inside the base. The base has first to third regions. The first region has a circular upper surface. The second region surrounds the first region. The third region surrounds the second region. The upper surface of the first region, the upper surface of the second region, and the upper surface of the third region are flat and continuous. The first support is provided on the first region and is configured to support the substrate placed thereon. The second support is provided on the third region to surround the first support, is configured to support the edge ring placed thereon, and is separated from the first support.
US11705299B2

The invention relates to a liquid metal-ion beam system (1) or liquid metal electron beam system, including: a conductive emitter electrode (2), a conductive extractor electrode (3) opposite to the emitter electrode (2), a liquid metal reservoir (4) which is fluidically connected to the emitter electrode (2) for transporting liquid metal to the emitter electrode (2), a control unit (5) which is configured to apply a periodically varying operating voltage between emitter electrode (2) and extractor electrode (3).
US11705289B2

A switching device includes: a first and a second fixed contact; a contact bridge; a first movable contact and a second movable contact that are arranged at the contact bridge; a first terminal contact on which the first fixed contact is mounted; and a second terminal contact on which the second fixed contact is mounted. The first fixed contact is in contact with the first movable contact and the second fixed contact is in contact with the second movable contact in a switched-on state of the switching device. The first fixed contact is free of contact with the first movable contact and the second fixed contact is free of contact with the second movable contact in a switched-off state of the switching device. A path of a load current flowing through the contact bridge between the first and second movable contacts in the switched-on state extends in a first plane.
US11705283B2

A multilayer ceramic electronic component includes a ceramic body including a first internal electrode and a second internal electrode disposed to be alternately stacked with a dielectric layer interposed therebetween, a first external electrode connected to the first internal electrode and including a first electrode layer, a first conductive layer, and a first metal layer, a second external electrode connected to the second internal electrode and including a second electrode layer, a second conductive layer, and a second metal layer, and a first coating layer disposed on the ceramic body, the first electrode layer and the second electrode layer, wherein the first coating layer may include an alkyl(meth)acrylate-based polymer.
US11705282B2

A multilayer ceramic capacitor includes a multilayer body including dielectric layers and internal electrode layers laminated alternately on each other, and external electrode layers provided on opposing end surfaces of the multilayer body in a length direction orthogonal or substantially orthogonal to a lamination direction, and each connected with the internal electrode layers, in which the dielectric layers each include at least one of Ca, Zr, or Ti, the internal electrode layers each include Cu, and when a dimension in the lamination direction of the multilayer body is defined as T0, a dimension in the length direction of the multilayer body is defined as L0, and a dimension in a width direction orthogonal or substantially orthogonal to the lamination direction and the length direction is defined as W0, a relationship of L0
US11705277B2

A multilayer capacitor includes a body including dielectric layers and internal electrodes, and external electrodes, wherein the body has first and second surfaces opposing each other in a first direction, third and fourth surfaces opposing each other in a second direction, and fifth and sixth surfaces opposing each other in a third direction perpendicular to the first and second directions. A length of a portion of the plurality of internal electrodes in the third direction in an intermediate region of the body in the first direction is greater than a length of the first surface or the second surface of the body in the third direction. The plurality of internal electrodes have a bottleneck structure between the intermediate region and at least one of the first and second surfaces, and wherein the bottleneck structure has a shape recessed into an inner portion of the body.
US11705276B2

A method for manufacturing an electronic-component includes a step of forming a laminate substrate including a plurality of laminates disposed in a direction intersecting with a lamination direction via a division portion by laminating a plurality of insulator layers, and a step of singulating the plurality of laminates by removing the division portion. The step of forming the laminate substrate includes a step of forming an insulator resist layer containing an insulating material on a base material, the insulating material being a constituent material of each of the insulator layers and a step of forming the insulator layer by curing the insulator resist layer by exposure, except for at least an insulator resist portion corresponding to the division portion. The division portion including the insulator resist portion is removed by development in the step of singulating.
US11705274B2

An arrangement for an overvoltage protection of a subsea electrical apparatus and a method for operating it. The arrangement includes a tank submersible below a water surface level, an electrical apparatus accommodated in the tank, and a surge arrester arrangement accommodated in the tank and coupled to a power supply of the electrical apparatus in the tank for providing the overvoltage protection of the electrical apparatus. The arrangement further includes a controllable grounding switch for connecting the surge arrester arrangement to a ground point in response to a control of the grounding switch to a closed state and for disconnecting the surge arrester arrangement from the ground point in response to a control of the grounding switch to an open state.
US11705270B2

In a coil component, an uneven structure provided by an insulation layer and a resin wall contributes to extension of a contact area with respect to a magnetic body, so that an adhesive force with respect to the magnetic body is improved. In addition, the magnetic body protrudes downward toward an exposed region of the resin wall corresponding to a recessed portion in the uneven structure, a volume thereof is increased, and coil characteristics such as an inductance value are improved.
US11705263B2

The present invention belongs to the technical field of magnetically controlled soft-bodied robots, and more specifically, relates to a controllable and reconfigurable magnetization system and method for a magnetic soft-bodied robot. The system comprises a pulse power supply module, magnetizing coil units axisymmetrically arranged up and down, and a magnetic soft-bodied robot placed between the upper and lower magnetizing units. By means of changing the relative current flow direction of the upper and lower magnetizing coil modules, radial and vertical magnetic fields can be generated between the magnetizing coils arranged oppositely without any mechanical movement, so that the internal magnetization direction of the magnetic soft-bodied robot can be configured simply and flexibly. The present invention realizes for the first time the particle magnetization and synchronization of bidirectional orientations, and decouples the material preparation process of the magnetic soft-bodied robot from the magnetization process, so that the entire manufacturing process is very simple. Moreover, the internal magnetization distribution is reconfigurable, which provides a completely new technical approach for realizing multifunctional magnetic soft-bodied robots.
US11705261B2

An apparatus comprising a signal transformer coupled to a power line and a signal transmission, reception, or detection circuit. A sensor is configured to be responsive to the power line current or magnetic flux generated in a ferrite core of the signal transformer. When the sensor indicates that the flux generated by the power line current mat cause an attenuation of the signal strength, a second circuit generates a current through a flux cancelling winding that cancels at least some of the flux generated by the power line current.
US11705259B2

According to an aspect, a soft magnetic metal powder includes a plurality of soft magnetic metal particles containing iron, a surface of each of the soft magnetic metal particles is covered with a coating part, and a maximum height Sz of a surface of the coating part is 10 to 700 nm. According to another aspect, a soft magnetic metal powder includes a plurality of soft magnetic metal particles containing iron, a surface of each of the soft magnetic metal particles is covered with a coating part, and a maximum height Rz of a surface of the coating part is 10 to 700 nm.
US11705250B2

A magnetic shielding material includes a material comprising manganese bismuth (MnBi) and tungsten (W), where a ratio of MnBi:W is in a range of 50:50 to about 70:30. A radiation shielding product includes a part including manganese bismuth (MnBi) and tungsten (W), and a plurality of layers having a defined thickness in a z-direction, wherein each layer extends along an x-y plane perpendicular to the z-direction. At least some of the plurality of layers form a functional gradient in the z-direction and/or along the x-y plane, and the functional gradient is defined by a first layer comprising a ratio of MnBi:W being less than 100:0 and an nth layer above the first layer comprising a ratio of MnBi:W greater than 0:100.
US11705245B2

A neural network is trained using transfer learning to analyze medical image data, including 2D, 3D, and 4D images and models. Where the target medical image data is associated with a species or problem class for which there is not sufficient labeled data available for training, the system may create enhanced training datasets by selecting labeled data from other species, and/or labeled data from different problem classes. During training and analysis, image data is chunked into portions that are small enough to obfuscate the species source, while being large enough to preserve meaningful context related to the problem class (e.g., the image portion is small enough that it can't be determined whether it is from a human or canine, but abnormal liver tissues are still identifiable). A trained checkpoint may then be used to provide automated analysis and heat mapping of input images via a cloud platform or other application.
US11705237B2

An information processing apparatus includes an acquisition unit, a determination unit, and an output unit. The acquisition unit acquires history information of image processing using a plurality of medical images. The determination unit determines, using the acquired history information, whether each of a plurality of candidate images that are candidates of a second medical image used for image processing together with a first medical image selected by an operator has already been processed. The output unit outputs a notification in accordance with the result of the determination.
US11705236B2

Item-management systems, apparatus, and methods are described, preferably for management of items such as medicaments. In embodiments, an item-management system comprises a container defining plural cells, a docking station configured to receive the container, sources of visible information to indicate the cell(s) into which an item is to be loaded, and at least one controller operable to control the visible information sources to indicate the cell into which the item is to be received.
US11705234B2

A medical device is disclosed. The medical device includes an RFID reader for receiving information from at least one RFID transponder. The medical device also includes a memory for storing a database and at least one processor for processing information. Also, a remote controller for a medical device is disclosed. The remote controller includes an information receiver for receiving information related to food. The infusion device also includes a memory for storing a database and at least one processor for processing information. A method for use in a medical device is also disclosed. The method includes receiving information from an RFID transponder related to food. Also, the processing the information by comparing the information to a database is included in the method. The method also includes determining the acceptability of the food and providing information related to acceptability to the user.
US11705229B2

A method and a device are for exchanging information regarding the clinical implications genomic variations. In an embodiment, the method includes receiving login-data of a user; evaluating the login-data received; establishing an encrypted data connection to the user after the evaluating indicates a positive evaluation of the login-data; saving, upon receiving a dataset in a context of a genomic variation, the dataset received in a memory, context-related with the genomic variation; and evaluating, upon a user request being received and connected with a search query for the genomic variation, a set of datasets from the memory, the datasets being context-related with the genomic variation and the set including the datasets that the user is authorized to receive, and sending the set of datasets to the user.
US11705225B2

A system and method for managing information relating to requests for a number of tests to be made of at least one sample within a laboratory environment are disclosed. The system may include a sample reception unit, a pre-analytical unit to scan, sort and/or aliquot the sample on request according to respective test requirements included within a respective sample order, an analytical unit to run at least one test on a sorted and/or aliquoted sample, and at least one decision unit. The decision unit acts as a connecting component for interconnecting the sample reception unit, the pre-analytical unit and the analytical unit as both an intermediary and coordinator such that tests can be performed via a recursive workflow until the sample is completely measured. The decision unit is further configured to collate the test results appropriately with the sample and to give a respective report towards a host component.
US11705224B2

Disclosed is a target-based drug screening method using inverse quantitative structure-(drug)performance relationships (QSPR) analysis and molecular dynamics simulation. The method includes modeling a molecular structure of a test compound group against a target molecule, obtaining a quantitative structure-(drug)performance relationships (QSPR) of the test compound group, acquiring the optimal pharmacophore of a novel target-based drug through a numerical inversion of the QSPR, and selecting drug candidates having a molecular structure similar to the optimum pharmacophore from the test compound group.
US11705217B2

Methods and systems for single molecule sequencing using concatemers of copies of sense and antisense strands. Concatemers are provided, for example, by carrying out rolling circle amplification on a circular molecule having sense and antisense regions to produce repeated copies of the sense and antisense regions connected by linking regions. The circular molecules can be produced by ligating hairpin adapters to each end of a double-stranded nucleic acid having a sense and antisense strand. The ligations can be carried out, for example using blunt end ligation. In some cases, a single molecule consensus sequence for a single template molecule is obtained. A single read from each template molecule can be obtained by comparing the sequence information of the sense and antisense regions.
US11705187B2

Described are memory modules that support different error detection and correction (EDC) schemes in both single- and multiple-module memory systems. The memory modules are width configurable and support the different EDC schemes for relatively wide and narrow module data widths. Data buffers on the modules support the half-width and full-width modes, and also support time-division-multiplexing to access additional memory components on each module in support of enhanced EDC.
US11705186B2

An example apparatus includes a sense amplifier, a plurality of storage memory cells coupled to the sense amplifier via a first digit line, and a plurality of offset memory cells coupled to the sense amplifier via a second digit line. The plurality of storage memory cells and the plurality of offset memory cells can comprise an array of memory cells. Each of the storage memory cells and the offset memory cells can include a respective capacitor having a particular capacitance.
US11705179B2

A semiconductor device includes a monitoring circuit suitable for generating a monitoring signal indicating whether a speed of a memory clock signal is changed based on a speed information signal representing speed information of the memory clock signal; a cycle control circuit suitable for generating a refresh cycle control signal for controlling a refresh cycle based on a system clock signal, the memory clock signal, the monitoring signal and a refresh flag signal; and a control circuit suitable for generating the memory clock signal and the refresh flag signal based on the speed information signal, the system clock signal and the refresh cycle control signal.
US11705178B2

Embodiments of the present application provide a method and apparatus for determining a refresh counter of a DRAM. The method includes: writing data to a target memory cell connected with a target word line in the DRAM, and controlling the DRAM to perform refreshes starting from a preset word line according to a preset rule; determining, according to whether the data can be read accurately from the target memory cell after the refreshes, an intermediate refresh counter of refreshes on the target word line; and controlling, based on the intermediate refresh counter, the DRAM to perform refreshes starting from the target word line according to the preset rule, and determining the refresh counter of the DRAM according to whether the data can be read accurately from the target memory cell after the refreshes.
US11705176B2

A storage circuit includes: the array of a memory cell MC including a variable-resistance element; a conversion circuit that converts the resistance value of each memory cell into the signal level of an electric signal; a reference signal generation circuit that generates a reference signal common to a plurality of columns; a correction circuit that corrects one of the signal level of the reference signal and the signal level of the electric signal for each column of the array of the memory cell; and an RW circuit that determines data stored in the memory cell belonging to a corresponding column by comparing one of the reference level and the signal level of the electric signal, corrected by the correction circuit, and the other of the reference level and the signal level of the electric signal.
US11705164B2

A supply voltage sensitivity of an output current of a bias current generator circuit is reduced. The bias current generator includes a plurality of transistors and a plurality of resistors coupled to the plurality of transistors. The supply voltage sensitivity of the output current of the bias current generator circuit is reduced by applying a second bias current generated by the bias current generator circuit to a first bias current generated by the bias current generator circuit.
US11705160B2

The present disclosure provides a method and device for processing a video. The method includes: determining a special effect video frame of a video, where a target feature area of the special effect video frame includes a preset special effect map; and modifying a display effect of the special effect map upon determining that a shielded area exists in the target feature area.
US11705156B2

A hexagonal strontium ferrite powder, in which an average particle size is 10.0 to 25.0 nm, a content of one or more kinds of atom selected from the group consisting of a gallium atom, a scandium atom, an indium atom, and an antimony atom is 1.0 to 15.0 atom % with respect to 100.0 atom % of an iron atom, and a coercivity Hc is greater than 2,000 Oe and smaller than 4.000 Oe. A magnetic recording medium including: a non-magnetic support; and a magnetic layer including a ferromagnetic powder and a binding agent on the non-magnetic support, in which the ferromagnetic powder is the hexagonal strontium ferrite powder. A magnetic recording and reproducing apparatus including this magnetic recording medium.
US11705155B2

The magnetic tape includes a non-magnetic support, a magnetic layer that includes ferromagnetic powder having an average particle volume of 2,500 nm3 or less on one surface side of the non-magnetic support, and a back coating layer that includes non-magnetic powder on the other surface side of the non-magnetic support, in which the ferromagnetic powder is ferromagnetic powder selected from the group consisting of hexagonal ferrite powder and ε-iron oxide powder, and a ratio (PSD5μm-PSDmag/PSD10μm-PSDbc) of the magnetic layer and the back coating layer is in a range of 0.0050 to 0.20. A magnetic tape cartridge and a magnetic recording and reproducing apparatus include the magnetic tape.
US11705153B1

A hard disk drive flexure assembly includes a metal substrate having a gap between a root side and a slider side, a base layer and a first conductive layer that each bridges the gap, and a plurality of electrical pads where the pads extend to the slider side of the flexure so as to positionally overlap with a slider end edge and corresponding slider electrical pads. Pre-solder bumps are formed on each pad. This configuration facilitates formation of a functional solder bridge between the flexure and the slider because the melted solder can readily spread on the extended flexure pad surface and reach the slider pad when the pre-solder bump is heated, as the pad material has higher solder wettability than that of a cover layer material. These techniques are especially relevant with narrow, high-density, small pitch electrical pads.
US11705142B2

A spectrum encoding method includes selecting an important spectral component in band units for a normalized spectrum and encoding information of the selected important spectral component for a band, based on a number, a position, a magnitude and a sign thereof. A spectrum decoding method includes obtaining from a bitstream, information about an important spectral component for a band of an encoded spectrum and decoding the obtained information of the important spectral component, based on a number, a position, a magnitude and a sign of the important spectral component.
US11705138B2

A method includes generating a synthesized non-reference high-band channel based on a non-reference high-band excitation corresponding to a non-reference target channel. The method further includes estimating one or more spectral mapping parameters based on the synthesized non-reference high-band channel and a high-band portion of the non-reference target channel. The method also includes applying the one or more spectral mapping parameters to the synthesized non-reference high-band channel to generate a spectrally shaped synthesized non-reference high-band channel. The method further includes generating an encoded bitstream based on the one or more spectral mapping parameters and the spectrally shaped synthesized non-reference high-band channel.
US11705137B2

Provided is an encoding apparatus for integrally encoding and decoding a speech signal and a audio signal, and may include: an input signal analyzer to analyze a characteristic of an input signal; a stereo encoder to down mix the input signal to a mono signal when the input signal is a stereo signal, and to extract stereo sound image information; a frequency band expander to expand a frequency band of the input signal; a sampling rate converter to convert a sampling rate; a speech signal encoder to encode the input signal using a speech encoding module when the input signal is a speech characteristics signal; a audio signal encoder to encode the input signal using a audio encoding module when the input signal is a audio characteristic signal; and a bitstream generator to generate a bitstream.
US11705136B2

Controlling a concealment method for a lost audio frame associated with a received audio signal is provided. At least one bin vector of a spectral representation for at least one tone is obtained, wherein the at least one bin vector includes three consecutive bin values for the at least one tone. Whether each of the three consecutive bin values has a complex value or a real value is determined. Responsive to the determination, the three consecutive bin values are processed to estimate a frequency of the at least one tone based on whether each bin value has a complex value or a real value.
US11705135B2

Detecting a replay attack on a voice biometrics system comprises: receiving a speech signal from a voice source; generating and transmitting an ultrasound signal through a transducer of the device; detecting a reflection of the transmitted ultrasound signal; detecting Doppler shifts in the reflection of the generated ultrasound signal; and identifying whether the received speech signal is indicative of liveness of a speaker based on the detected Doppler shifts. The method further comprises: obtaining information about a position of the device; and adapting the generating and transmitting of the ultrasound signal based on the information about the position of the device.
US11705133B1

This disclosure describes techniques for identifying users that are enrolled for use of a user-recognition system. To be identified using the user-recognition system, a user may first enroll in the system by stating an utterance at a first device having a first microphone. In response, the first microphone may generate first audio data. Later, when the user would like to be identified by the system, the user may state the utterance again, although this time to a second device having a second microphone. This second microphone may accordingly generate second audio data. Because the acoustic response of the first microphone may differ from the acoustic response of the second microphone, however, this disclosure describes techniques to apply a relative transfer function to one or both of the first or second audio data prior to comparing these data so as to increase the recognition accuracy of the system.
US11705126B2

A barrier-free intelligent voice system and a method for controlling thereof, wherein multiple words are recognized from a voice audio to create multiple independent semantic units. Meanwhile, the system can continuously determine whether they are one of multiple voice tags created by the user. Thereafter, a target object, a program command, and a remark corresponding to the voice tag can be determined based on the successfully compared voice tag combination. Accordingly, a corresponding program can be started or a remote device can be triggered to operate. The present disclosure can be regarded as an AI intelligent voice processing engine. By allowing users to define different types of voice tag combinations, it can eliminate the grammatical and semantic analysis of natural language processing, eliminate speech translation differences and errors between different languages, effectively reduce the amount of calculations, increase the processing speed of the system, minimize system judgment errors.
US11705125B2

A processor may receive data regarding a context for a first dialog turn. The processor may monitor a voice input from a user for the first dialog turn. The processor may detect a first pause in the voice input, the first pause having a duration that satisfies a time threshold. The processor may receive, based on the first pause, first voice input data. The processor may analyze the first voice input data. The processor may determine that additional time is recommended for the voice input to be provided by the user.
US11705121B2

A system of multi-modal transmission of packetized data in a voice activated data packet based computer network environment is provided. A natural language processor component can parse an input audio signal to identify a request and a trigger keyword. Based on the input audio signal, a direct action application programming interface can generate a first action data structure, and a content selector component can select a content item. An interface management component can identify first and second candidate interfaces, and respective resource utilization values. The interface management component can select, based on the resource utilization values, the first candidate interface to present the content item. The interface management component can provide the first action data structure to the client computing device for rendering as audio output, and can transmit the content item converted for a first modality to deliver the content item for rendering from the selected interface.
US11705113B2

A speech processing system uses contextual data to determine the specific domains, subdomains, and applications appropriate for taking action in response to spoken commands and other utterances. Some applications may be given priority over others such that some applications are general request applications to which responsibility for processing an intent is to be assigned as long as contextual criteria are satisfied, while other applications are specific request applications to which responsibility for processing an intent is to be assigned only if the applications are specifically requested, if the contextual criteria of priority applications are not satisfied, and/or if certain contextual criteria associated with the specific request applications are satisfied.
US11705111B2

A method to adaptively predict non-default actions against unstructured utterances by an automated assistant operating in a computing-system is provided. The method includes extracting voice-features based on receiving an input utterance from at-least one speaker by an automatic speech recognition (ASR) device, identifying the input utterance as an unstructured utterance based on the extracted voice-features and a mapping between the input utterance with one or more default actions as drawn by the ASR, obtaining at least one probable action to be performed in response to the unstructured utterance through a dynamic bayesian network (DBN). The method further includes providing the at least one probable action obtained by the DBN to the speaker in an order of the posterior probability with respect to each action.
US11705106B2

Processor(s) of a client device can: identify a textual segment stored locally at the client device; process the textual segment, using a speech synthesis model stored locally at the client device, to generate synthesized speech audio data that includes synthesized speech of the identified textual segment; process the synthesized speech, using an on-device speech recognition model that is stored locally at the client device, to generate predicted output; and generate a gradient based on comparing the predicted output to ground truth output that corresponds to the textual segment. In some implementations, the generated gradient is used, by processor(s) of the client device, to update weights of the on-device speech recognition model. In some implementations, the generated gradient is additionally or alternatively transmitted to a remote system for use in remote updating of global weights of a global speech recognition model.
US11705103B2

An audio system for an ear mountable playback device comprises a speaker, an error microphone predominantly sensing sound being output from the speaker and a feed-forward microphone predominantly sensing ambient sound. The audio system further comprises a voice activity detector which is configured to record a feed-forward signal from the feed-forward microphone. Furthermore, an error signal is recorded from the error microphone. A detection parameter is determined as a function of the feed-forward signal and the error signal. The detection parameter is monitored and a voice activity state is set depending on the detection parameter.
US11705099B2

Provided is a soundproof structure that is small and light and can reduce noise with a high natural frequency of a sound source at a plurality of frequencies at the same time. The soundproof structure according to the embodiment of the present invention includes a plurality of membrane-like members that are overlapped to be spaced from each other, a support that is made of a rigid body and supports each of the plurality of membrane-like members so as to perform membrane vibration, an inter-membrane space that is sandwiched between two adjacent membrane-like members among the plurality of membrane-like members, and a rear surface space that is formed between one membrane-like member at one end of the support in the support among the plurality of membrane-like members and the one end of the support, in which each of the plurality of membrane-like members absorbs a sound by performing the membrane vibration in a state where the one end of the support is closed.
US11705090B2

Apparatus, systems, and methods for providing a rearward view of an aircraft. The system, apparatus, and methods include one or more cameras disposed on an aft portion of a fuselage of the aircraft, a heads-up display is within a cockpit of the aircraft, and a heads-up control. The heads-up control receives image data from the one or more cameras and generates an image on the heads-up display based on the image data from the one or more cameras to provide a rearward view of an area behind the aircraft. The heads-up control may be configured to determine when an aerial object is within a predetermined range behind the aircraft and responsively generate the image on the heads-up display based on the image data from the one or more cameras to provide a rearward view of an area behind the aircraft in which the aerial object is located.
US11705089B2

A system includes a spatial light modulator (SLM) configured to project an image. The system also includes a controller coupled to the SLM. The controller is configured to receive the image and determine a brightness level of the image. The controller is also configured to enforce a brightness limit on the image responsive to the brightness level, to produce a reduced image. The controller is configured to instruct a display to display the reduced image.
US11705085B2

A gate driving circuit and a display panel are provided. The gate driving circuit includes a plurality of shift register units as cascaded, and the plurality of shift register units as cascaded includes a first shift register unit including a first clock signal terminal, an (n+1)-th shift register unit including an (n+1)-th clock signal terminal, a second shift register unit including a second clock signal terminal, and an (n+2)-th shift register unit including an (n+2)-th clock signal terminal. The gate driving circuit further includes a first clock signal line connected to the first clock signal terminal and the (n+1)-th clock signal terminal, and a second clock signal line connected to the second clock signal terminal and the (n+2)-th clock signal terminal.
US11705073B2

The present disclosure relates to a DRD type display panel. The display panel includes first to fourth pixels; a first data line through which a data signal is transmitted to the first and second pixels; a second data line through which a data signal is transmitted to the third and fourth pixels; a first gate line through which a scan signal is transmitted to the first and third pixels; a second gate line through which a scan signal is transmitted to the second and fourth pixels; a reference voltage line used to detect deterioration of OLEDs in the first to fourth pixels; a first power line positioned on the left of the first data line and supplying driving power to the first and second pixels; and a second power line positioned on the right of the second data line and supplying driving power to the first and second pixels.
US11705071B2

A display device includes pixels electrically connected to a plurality of scan lines and a plurality of data lines, respectively, a scan driver that provides a scan signal to each of the plurality of scan lines, a voltage supply that supplies a first gate voltage to the scan driver through a first gate power line, and a voltage compensator. The voltage compensator senses a partial voltage of the first gate voltage applied to the scan driver through a feedback line. The voltage compensator compensates the first gate voltage with a second gate voltage in case that the sensed first gate voltage is greater than a first reference voltage.
US11705066B2

A pixel of display device includes a light emitting element, a first transistor coupled between first power source and a second node and having a gate electrode connected to a first node N1, and the first transistor being configured to control a driving current supplied to the light emitting element in response to a voltage of the first node, a first capacitor including one electrode connected to the first node and another electrode connected to a third node, a second transistor coupled between the third node and a data line, a third transistor coupled between the first node and the second node, a fourth transistor coupled between the first node and an initialization power source, a fifth transistor coupled between a reference power source and the third node, and an eighth transistor coupled between a fourth node and an anode initialization power source.
US11705061B2

A display device includes a display panel, a display driver integrated circuit and a driving control circuit. The display panel includes a plurality of pixels connected to a plurality of driving lines and a plurality of source lines. The display driver integrated circuit includes a driving control signal generator. The driving control signal generator generates a driving control signal based on display device information and pixel values corresponding to at least a portion of the plurality of rows among a plurality of previous pixel values of a previous frame and a plurality of present pixel values of a present frame. The driving control circuit selectively connects the display driver integrated circuit with each of the plurality of driving lines based on the driving control signal such that first driving signals provided to first driving lines among the plurality of driving lines are blocked.
US11705055B2

The present disclosure provides a display device. The display device includes at least one display panel including at least one light-emitting diode (LED) light board, a drive control module connected to the LED light board, and a detecting module respectively connected to the LED light board and the drive control module. The LED light board includes at least one LED. The drive control module is configured to drive the LED of the LED light board to display.
US11705054B2

The present application discloses a display panel driving circuit and a display panel. The display panel driving circuit includes a driving circuit and a light-emitting diode. The driving circuit is connected to the light-emitting diode. The driving circuit includes a plurality of superimposed driving modules, and a corresponding number of driving modules are selectively conducted according to a preset grayscale. Each driving module includes a scan control transistor, a switch transistor and a drive transistor, in each driving module the scan control transistor is connected to the drive transistor via the switch transistor, in each driving module a first end of the scan control transistor is connected to a scan signal terminal, and the light-emitting diode and the drive transistors of the driving modules are sequentially connected. The present application can better increase the number of grayscales, thereby improving image quality.
US11705052B2

The present application relates to a sub-pixel rendering method for a display panel, which determines sampling locations according to arrangement locations of the sub-pixels, converts an input image according to a human vision model for correspondingly generating an adjustment luminance data, and samples a plurality of adjustment luminance value of the adjustment luminance data according to the sampling locations. Thereby, corresponded target grayscale data is generated. Thus, the input image is prevented from distortion.
US11705048B2

A shift register unit, a circuit structure, a gate drive circuit, a drive circuit and a display device are provided. A shift register unit includes a substrate and an input circuit, a reset circuit, a first output circuit, a first output terminal, a first connection conductive portion connecting both the input circuit and the reset circuit, a second connection conductive portion connecting both the reset circuit and the first output circuit, and a third connection conductive portion connecting both the first output circuit and the first output terminal, all of which are on the substrate.
US11705045B2

Disclosed are a method for generating display data by a rotatory stereoscopic display apparatus, a display driving method, a computer device, a rotatory stereoscopic display apparatus, and a stereoscopic display system. The method for generating display data includes: generating, based on display parameters of the rotatory stereoscopic display apparatus and a model to be displayed, an image array for displaying the model; generating, for an image in the image array, an initial data stream of the image, the initial data stream including: grayscale datum of each pixel in the image; and performing data compression on the initial data stream to generate a compressed data stream, the compressed data stream including: data units of pixels whose grayscale data is non-zero data, each data unit including: grayscale datum of the pixel and an order of the grayscale datum in the initial data stream.
US11705035B2

Provided are a display panel and a display device. The display panel includes multiple cascaded gate drive units. Each gate drive unit includes a shift register unit and an inverted unit. The inverted unit is electrically connected to the shift register unit. A scan output terminal of the shift register unit is electrically connected to one scan line. An inverted scan output terminal of the inverted unit is electrically connected to one inverted scan line. The scan output terminal of the shift register unit outputs a first effective pulse signal. The inverted scan output terminal of the inverted unit outputs a second effective pulse signal. A time period corresponding to the first effective pulse signal at least partially overlaps a time period corresponding to the second effective pulse signal, and the type of the first effective pulse signal is opposite to the type of the second effective pulse signal.
US11705032B2

A driving circuit and a display panel are disclosed. The driving circuit includes a plurality of cascaded driving units. The driving unit includes a forward/backward scan control module, a first control node controlling module, a second control node controlling module, a global control module, a regulating module, a first output module configured to output a stage signal, and a second output module configured to output a gate driving signal. A voltage level of the gate driving signal is higher than a voltage level of the stage signal.
US11705027B2

The application discloses a method for detecting gate line defects, a display panel and a readable storage medium. The method for detecting gate line defects includes the following operations: controlling a display panel to enter a self-checking mode upon receiving a startup signal; performing row scanning on the display panel according to a first preset frame rate, where the first preset frame rate is greater than a normal frame rate when the display panel normally operates; and upon determining that the display panel is abnormal, issuing a prompt message.
US11705014B1

A group study system is described. The group study system allows for students to form study groups with other students in the same class or related classes by utilizing various technologies that make such a system possible. The system provides for an anonymous creation of the study sessions and maintains the anonymity until all students joining the study session participate in the study session. These sessions can be in person and virtual. Hybrid and virtual sessions are becoming more and more important with the increasing presence of online education. This system harnesses technology in an innovative way to do something that was not possible years ago by enabling students to gather in a learning environment with other students who previously did not know each other. Additionally, the system operates to allow crowd sourcing of data for the input of exam data, including date and time of the exam in order to automatically extend exam reminders.
US11705011B2

A system and method for an ownship aircraft auto transition from an assigned spacing application to a visual separation application provides the ability to intuitively pre-configure for and execute an automatic transition from an assigned spacing traffic application managing an assigned interval spacing to a traffic application managing visual separation from an assigned target aircraft. This feature enables integration between separate traffic applications, creating new capabilities while reducing the workload on the pilot during a particularly busy phase of flight.
US11704988B2

The present invention relates to a system and method for monitoring the safety of users in a shaded area, wherein location information about an RFID post installed in a shaded area is identified by means of an RFID tag, so that the location of a work group working in the shaded area can be transmitted to a control server in real time, and the control server compares the location of the work group with operation information about trains, thereby determining whether the work group is in danger or not, makes notification the same, so that the safety of the work group can be secured.
US11704980B2

A method by a network device for outputting a virtual application object includes acquiring current status information of a plurality of virtual application objects in a virtual application, the current status information indicating that a virtual application object is in a known state or in an unknown state, constructing a virtual application object status plane based on the current status information of the plurality of virtual application objects, where the virtual application object status plane includes a region corresponding to each virtual application object, the region includes the current status information of the corresponding virtual application object, determining, based on the virtual application object status plane, output probabilities corresponding to a plurality of to-be-outputted virtual application objects, and determining, based the output probabilities corresponding to the plurality of to-be-outputted virtual application objects, a target virtual application object from the plurality of to-be-outputted virtual application objects.
US11704977B2

A lottery apparatus includes a programmed computer acting as a lottery control system which controls operation of the distribution of prizes to the purchasing customers from a lottery pool. The apparatus includes a plurality of typical instant win lottery tickets having a predetermined prize result taken from the pool together with a plurality of lottery cards which do not act as lottery tickets but instead include an activation code containing no information defining a prize and an access code which is used for entry by the customer into a digital experience provided by the lottery control system by which the customer accesses game information. The system, when the code is activated, assigns the result from the pool to the code and displays to the customer on a digital experience when accessed by the access code.
US11704971B2

In one aspect, gaming machines and systems are configured to distribute of viral events, such as viral gaming events, amongst devices. The devices can, for example, be gaming machines and/or mobile devices. According to one embodiment, once a viral event is triggered, it is presented at one or more first devices at a first time. The viral event spreads to other devices, such as one or more second devices where it can be presented at a later time. The viral event may continue to spread to numerous other devices. In another aspect, an apparatus, method, and system to acquire and display casino data on a portable electronic device may include a portable electronic device operative with a real-time location based data application to transmit the location of the portable electronic device and acquire, prioritize, store and display real-time casino data.
US11704969B2

This disclosure describes systems, methods, and computer-readable media related playing a progressive game, In some embodiments, at least one request may be received from a player to play a first game associated with a first prize pool. Play of the first game may be facilitated on at least one networked terminal based at least in part on receiving the at least one request from the, player to play the first game. Play of a second game associated with a second prize pool on the at least one networked terminal may be initiated, The second game may be initiated in response to the second prize pool reaching a predetermined amount.
US11704964B2

In various embodiments, promotions are featured on mobile gaming devices.
US11704957B2

A method and system is provided for determining the denomination and related data for a currency item using a personal computing device, such as a mobile phone. The device includes or is connected to an image capture device that is preferably a digital video camera. At least one image of a target currency item is captured then processed for image quality. A further processing of the image includes a coordinate mapping. A comparison is made between individual pixels of the processed image based on the assigned coordinate mapping with a database of reference currency images to determine the currency denomination. Additional processing of the currency image provides the date and other data regarding the target currency item. A market value for the target currency item is identified by reference to a valuation database using the data determined for the currency item.
US11704955B2

A wireless device system employs short-range wireless communication to require the proximity of a user device to a defined area prior to communicating a request or notification to the wireless user device. The system authenticates a request and the proximity of the user to or within the defined area prior to transmitting a command, request, or notification to the user or a third party. Additionally, the system uses an access node configured to shape the radiation pattern of short-range wireless communications to better determine the position of a user proximate in or around a defined area.
US11704951B2

Techniques are described for keyless entry to a structure (e.g., hotel room) utilizing a set-back box. Registrants (e.g., hotel guest) may scan a barcode from their mobile device to check-in to the structure. Upon scanning the barcode or by other means, a mobile device identifier (e.g., a Bluetooth low-energy address (BLE)) is registered and associated with the checked-in structure. Receiving the registered mobile device identifier, the backend server pushes such to the set-back box associated with (e.g., resides in) the checked-in structure. The set-back box is enabled (e.g., BLE enabled) to actively scan addresses of nearby mobile devices. When the registered mobile device identifier is detected within a predetermined signal strength range (e.g., by using received signal strength indicator (RSSI) levels), the set-back box transmits a command to a smart lock (e.g., via BLE or Wifi or other radio) or to a lock controlling backend processor, to open the lock.
US11704944B2

The present application discloses a display panel and a display device. The display panel includes: a common electrode layer including a plurality of columns of first common electrodes, wherein each column of the plurality of columns of the first common electrodes includes a plurality of touch electrodes insulated from each other; and a driving module. Each of the plurality of touch electrodes is electrically connected to the driving module through one or more touch leads. A number of the touch leads corresponding to each of or adjacent ones of the plurality of touch electrodes gradually increases along a direction away from the driving module.
US11704934B2

An information processing apparatus (100) includes an acquisition unit (122) that acquires a first image from which person region feature information regarding a region including other than a face of a retrieval target person is extracted, a second image in which a collation result with the person region feature information indicates a match, and a facial region is detected, and result information indicating a collation result between face information stored in a storage unit and face information extracted from the facial region, and a display processing unit (130) that displays at least two of the first image, the second image, and the result information on an identical screen.
US11704932B2

A collation system of the present invention includes an imaging means for acquiring a captured image of a pre-passage side area with respect to a gate, a collation means for performing a collation process between a previously registered target and a target in the captured image, and a determination means for determining propriety of passage of the target with respect to the gate, on the basis of a result of the collation process. The collation means initiates the collation process on the basis of a condition, set to each area of the captured image, for the target located in the area.
US11704926B2

Example embodiments that analyze images to characterize aspects of the images rely on a same neural network to characterize multiple aspects in parallel. Because additional neural networks are not required for additional aspects, such an approach scales with increased aspects.
US11704921B2

Character recognition processing suitable to a handwritten character area and a printed character area among character areas in a scanned image of a document is performed. Next, character recognition results for the handwritten character area and character recognition results for the printed character area are integrated and a likelihood indicating a probability of being an extraction target is calculated for a candidate character string that is an extraction candidate among the integrated character recognition results and a character string that is the item value is determined. Then, at the time of the determination, different evaluation indications are used in a case where a character originating from the handwritten character area is included in characters constituting the candidate character string and in a case where such a character is not included.
US11704919B2

A high-power-microscope-assisted identification method of maize haploid plants is provided, the method is implemented by a device including a high power microscope, a main frame disposed on an objective table of the high power microscope and a computer and includes four procedures of sample information input, automatic testing of a batch of samples, automatic analysis and comparison, and automatic generation of data results. Vertical sliding grooves are symmetrically formed in the main frame, and a vertical supporting plate is disposed at an upper end of the main frame. Horizontal sliding grooves are symmetrically formed in the vertical supporting plate, and a horizontal supporting plate is disposed on the vertical supporting plate.
US11704918B2

Aspects of the present disclosure include reconfigurable integrated circuits for characterizing particles of a sample in a flow stream. Reconfigurable integrated circuits according to certain embodiments are programmed to calculate parameters of a particle in a flow stream from detected light; compare the calculated parameters of the particle with parameters of one or more particle classifications; classify the particle based on the comparison between the parameters of the particle classifications and the calculated parameters of the particle; and adjust one or more parameters of the particle classifications based on the calculated parameters of the particle. Methods for characterizing particles in a flow stream with the subject integrated circuits are also described. Systems and integrated circuit devices programmed for practicing the subject methods, such as on a flow cytometer, are also provided.
US11704913B2

A list of images is received. The images were captured by a sensor of an ADV chronologically while driving through a driving environment. A first image of the images is identified that includes a first object in a first dimension (e.g., larger size) detected by an object detector using an object detection algorithm. In response to the detection of the first object, the images in the list are traversed backwardly in time from the first image to identify a second image that includes a second object in a second dimension (e.g., smaller size) based on a moving trail of the ADV represented by the list of images. The second object is then labeled or annotated in the second image equivalent to the first object in the first image. The list of images having the labeled second image can be utilized for subsequent object detection during autonomous driving.
US11704910B2

A vehicle detecting device includes a region setting unit that sets a plurality of regions of interest having different ranges on image data acquired from an image capturing device that captures an image of a space in front of a host vehicle; and a vehicle determining unit that determines, for each of the regions of interest, presence of a front vehicle based on a luminous point present in the region and that executes a determination at different frequencies in the respective regions of interest.
US11704902B2

Disclosed embodiments include apparatuses, systems, and methods for determining a field in a path of travel of a vehicle for detection of objects in the path of travel. In an illustrative embodiment, an apparatus includes a path identifier configured to identify a path of travel for a vehicle. At least one camera is disposed on the vehicle and is configured to capture image data of an area including the path of travel. A region of interest selector is configured to select a region of interest within the image data. A horizon identifier is configured to identify a horizon in the image data. A field determiner is configured to project the horizon onto the region of interest to isolate a field specified by the path of travel and the horizon, the field being evaluatable for the presence of objects in the path of travel of the vehicle.
US11704900B2

In one embodiment, a method includes, by a client system, receiving, at the client system, a first user input, processing by the client system, the first user input to provide an initial response by identifying one or more entities referenced by the first user input and providing, by the client system, the initial response, where the initial response includes a conversational filler referencing at least one of the one or more identified entities, processing the first user input to provide a complete response by identifying, by the client system, one or more intents and one or more slots associated with the first user input based on a semantic analysis by a natural-language understanding module, and providing, by the client system, the complete response subsequent to the initial response, where the complete response is based on the one or more intents and the one or more slots.
US11704899B2

In one embodiment, a method includes receiving a request to access a first record in a plurality of records, where the first record describes a first set of attributes of a first entity, determining the first record is linked to a globally unique entity identifier, identifying one or more second records linked to the unique entity identifier, where the one or more second records describe one or more second sets of attributes of the first entity, generating a fused record comprising descriptions of attributes of the first entity from the first set and second sets of attributes, where the fused record is generated by deduping the plurality of records to associated the first record and the one or more second record with the unique entity identifier and compiling the first set and one or more second sets of attributes, and sending, in response responsive to the request to access the first record, instructions for presenting the fused record.
US11704896B2

A Method, apparatus, device, and storage media for image processing are provided. The method include: acquiring a set of image sequences, the set of image sequences including a plurality of image sequences; determining a first similarity measurement between image sequences in the set of image sequences; dividing the set of image sequences into one or more subset of image sequences based on a first similarity measurement; and determining, in each subset of image sequences, degrees of correlation between images in one image sequence of the subset of image sequences and images in other image sequences of the subset of image sequences.
US11704893B2

Aspects of the present disclosure involve a system comprising a storage medium storing a program and method for receiving a video comprising a plurality of video segments; selecting a target action sequence that includes a sequence of action phases; receiving features of each of the video segments; computing, based on the received features, for each of the plurality of video segments, a plurality of action phase confidence scores indicating a likelihood that a given video segment includes a given action phase of the sequence of action phases; identifying a set of consecutive video segments of the plurality of video segments that corresponds to the target action sequence, wherein video segments in the set of consecutive video segments are arranged according to the sequence of action phases; and generating a display of the video that includes the set of consecutive video segments and skips other video segments in the video.
US11704887B2

A system, apparatus, method and computer program product are provided for determining a mobile device integrity status. Images of a mobile device captured by the mobile device and using a reflective surface are processed with various trained models, such as neural networks, to verify authenticity, detect damage, and to detect occlusions. A mask may be generated to enable identification of concave occlusions or blocked corners of an object, such as a mobile device, in an image. Images of the front and/or rear of a mobile device may be processed to determine the mobile device integrity status such as verified, not verified, or inconclusive. A user may be prompted to remove covers, remove occlusions, and/or move the mobile device closer to the reflective surface. A real-time response relating to the mobile device integrity status may be provided. The trained models may be trained to improve the accuracy of the mobile device integrity status.
US11704885B2

Systems and methods for providing an AR visual display to save are described. A camera of a computing device scans an area and an AR engine of the computing device extrapolates flat portions of the area. A digital representation of the area is displayed via a GUI of the computing device to allow a user to place digitally created content. The digitally created content is textual content, 2D content, 3D content, video content, and/or audio content. The AR engine receives, from a user, an action executed on a surface and at a location of the digital representation to add a tag or an anchor. The AR engine utilizes planes as indicators to save the placement of the tag or the anchor and transmits the placement of the tag or the anchor to a server. The placement of the tag or the anchor allows for viewing from other computing devices.
US11704884B2

The present invention relates to the technical field of two-dimensional (2D)/three-dimensional (3D) modeling, and in particular to a method, system, and device for combining models in a virtual scene, and a medium. The method of the present invention includes: placing a first model into a second model; determining a filling space and a removing space of the first model; filling an overlapping space between the first model and the second model with the second model, and filling the filling space of the first model with the second model; and removing the second model with which the removing space of the first model is filled, wherein when the overlapping space between the first model and the second model is filled with the second model, and the filling space of the first model is filled with the second model, the removing space of the first model is filled with the second model. The present invention simplifies a workflow of a scene designer, reduces repetitive work, and achieves a desired effect of the models.
US11704882B2

Systems and methods for inserting supplemental content into presentations of two-dimensional video content are disclosed. Exemplary implementations may: obtain two-dimensional video content depicting a three-dimensional space; obtain supplemental content; obtain a model of the three-dimensional space defining the one or more visible physical features within the three-dimensional space; determine the camera position of the two-dimensional video content; identify a presentation location within the two-dimensional video content; determine integration information; modify the two-dimensional video content to include the supplemental content at the identified presentation locations in accordance with the integration information and/or perform other operations.
US11704868B2

An improved virtual environment creation and testing process can be achieved by a combination of spatial partitioning and reverse tree generation. The reverse tree may be representative of the virtual environment and may be generated starting from a smallest portion or zone of the virtual environment (represented as a leaf node) and expanding up towards a root node representative of the entire virtual environment. Advantageously, the system can add new zones to the virtual environment and representative tree data structure that are external to the existing virtual environment without generating a new tree data structure. Thus, the computing resources utilized by the system disclosed herein may be significantly reduced compared to existing processes while improving the flexibility of the spatial partitioning and tree generation process thereby enabling spatial partitioning to be performed in real or near real time as a developer authors the virtual environment.
US11704864B1

Disclosed herein is a web-based videoconference system that allows for video avatars to navigate within a virtual environment. Various methods for efficient modeling, rendering, and shading are disclosed herein.
US11704854B2

An information processing system, a method, and a computer program capable of improving a motivation to view and/or distribute a moving image may be provided herein, which may include a distribution unit for distributing a moving image, a first selection reception unit for receiving selection of at least one object from a plurality of objects corresponding to each of a plurality of character objects, a second selection reception unit for receiving selection of at least one object from a plurality of objects, a specification unit for specifying a performing user associated with a character object corresponding to an object receiving most selections by the first selection reception unit and the second selection reception unit, an association unit for associating a specific object, and a display processing unit for generating information for displaying a specific object associated by the association unit in association with a character object.
US11704852B2

A mapping system receives sensor data from an unmanned aerial vehicle. The mapping system further receives images from a camera of the unmanned aerial vehicle. The mapping system determines an altitude of the camera based on the sensor data. The mapping system calculates a footprint of the camera based on the altitude of the camera and a field of view of the camera. The mapping system constructs a localized map based on the images and the footprint of the camera.
US11704845B2

A method includes recording a plurality of projection recordings along a linear trajectory. An X-ray source and an X-ray detector move in parallel opposite to one another along the linear trajectory and the examination object is arranged between the X-ray source and the X-ray detector. The method includes reconstructing a tomosynthesis dataset, respective depth information of the examination object is respective determined along an X-ray beam bundle spanned by the motion along the linear trajectory and an X-ray beam fan of the X-ray source perpendicular to the linear trajectory so that different respective depth levels in the object parallel to a detection surface of the X-ray detector are respectively scanned differently. Finally, the method includes determining a first slice image with a first slice thickness in a depth level, among the respective depth levels, substantially parallel to the detection surface of the X-ray detector based on the tomosynthesis dataset.
US11704844B2

Provided are systems and methods for synthesizing novel views of complex scenes (e.g., outdoor scenes). In some implementations, the systems and methods can include or use machine-learned models that are capable of learning from unstructured and/or unconstrained collections of imagery such as, for example, “in the wild” photographs. In particular, example implementations of the present disclosure can learn a volumetric scene density and radiance represented by a machine-learned model such as one or more multilayer perceptrons (MLPs).
US11704838B1

An encoder may perform a dynamic encoding that adapts the encoding of hyperspectral data according to the number of bands of the electromagnetic spectrum that are captured by different imaging devices, the amount of data that is contained in each band, and/or encoding criteria that are specified by a user or that are automatically generated by the encoder for an optimal encoding of the hyperspectral data. The encoder may receive hyperspectral data for different electromagnetic spectrum bands. The encoder may determine an encoding resolution based on one or more of a number of bands and a maximum resolution within the received bands. The encoder may configure a block size for a file format that is used to store an encoding of the hyperspectral data based on the encoding resolution, and may encode the hyperspectral data contained within each band to at least one block of the block size.
US11704836B2

A method and computer software for creating an encoded image and which can optionally include a method for decoding the encoded image. The encoded image is preferably formed from at least one symmetric image but can be formed from a plurality of symmetric images. Embodiments of the present invention can be performed with physical paper and writing utensils or can be performed via computer software. Embodiments of the present invention can be used for art authentication based on results obtained by decoding an image. In one embodiment, one or more encoded image elements can be revealed simultaneously. Optionally, however, encoded image elements can be caused to be revealed in a series that gives a sense of motion in a manner similar to that of motion picture animation.
US11704834B2

Techniques for calibrating cameras and displays are disclosed. An image of a target is captured using a camera. The target includes a tessellation having a repeated structure of tiles. The target further includes unique patterns superimposed onto the tessellation. Matrices are formed based on pixel intensities within the captured image. Each of the matrices includes values each corresponding to the pixel intensities within one of the tiles. The matrices are convolved with kernels to generate intensity maps. Each of the kernels is generated based on a corresponding unique pattern of the unique patterns. An extrema value is identified in each of the intensity maps. A location of each of the unique patterns within the image is determined based on the extrema value for each of the intensity maps. A device calibration is performed using the location of each of the unique patterns.
US11704813B2

A visual search method, a visual search device, and an electrical device are provided. The method includes determining a first object in a visual search process. A power consumption of the first object in the visual search process is greater than a power consumption of a second object in the visual search process. The first object includes at least one of a program and an algorithm and the second object includes at least one of a program and an algorithm. The method further includes performing a visual search through an optimized object of the first object. At least one of a calculating speed of the optimized object is greater than a calculating speed of the first object and a total calculating time of the optimized object within a unit time is less than a total calculating time of the first object within the unit time.
US11704809B2

A method for segmenting images is provided including tessellating an image obtained from one of an image database and an imaging system into a plurality of sectors; classifying each of the plurality of sectors by applying one or more pre-defined labels to each of the plurality of sectors, wherein the pre-defined labels indicate at least one of an image quality metric (IQM) and a metric of structure; assigning each of the plurality of classified sectors an Image Quality Classification (IQC); identifying anchor sectors among the plurality of classified sectors, applying filtering and edge detection to identify target boundaries; applying contouring across contiguous sectors and using the assigned IQC as a guide to complete segmentation of an edge between any two identified anchor sectors; and smoothing across segmented regions to increase parametric second-order continuity.
US11704806B2

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for scalable three-dimensional (3-D) object recognition in a cross reality system. One of the methods includes maintaining object data specifying objects that have been recognized in a scene. A stream of input images of the scene is received, including a stream of color images and a stream of depth images. A color image is provided as input to an object recognition system. A recognition output that identifies a respective object mask for each object in the color image is received. A synchronization system determines a corresponding depth image for the color image. A 3-D bounding box generation system determines a respective 3-D bounding box for each object that has been recognized in the color image. Data specifying one or more 3-D bounding boxes is received as output from the 3-D bounding box generation system.
US11704804B2

Techniques are described for domain adaptation of image processing models using post-processing model correction According to an embodiment, a method comprises training, by a system operatively coupled to a processor, a post-processing model to correct an image-based inference output of a source image processing model that results from application of the source image processing model to a target image from a target domain that differs from a source domain, wherein the source image processing model was trained on source images from the source domain. In one or more implementations, the source imaging processing model comprises an organ segmentation model and the post-processing model can comprise a shape-autoencoder. The method further comprises applying, by the system, the source image processing model and the post-processing model to target images from the target domain to generate optimized image-based inference outputs for the target images.
US11704801B2

Some methods of analyzing one or more brain lesions of a patient comprise, for each of the lesion(s), calculating one or more lesion characteristics from a first 3-dimensional (3D) representation of the lesion obtained from data taken at a first time and a second 3D representation of the lesion obtained from data taken at a second time that is after the first time. The characteristic(s) can include a change, form the first time to the second time, in the lesion's volume and/or surface area, the lesion's displacement from the first time to the second time, and/or the lesion's theoretical radius ratio at each of the first and second times. Some methods comprise characterizing whether the patient has multiple sclerosis and/or the progression of multiple sclerosis in the patient based at least in part on the calculation of the lesion characteristic(s) of each of the lesion(s).
US11704800B2

Methods and apparatus for evaluating an impact of injury to brain networks or regions are provided. The method comprises receiving MRI data of a brain of an individual, including a first volumetric dataset recorded using first imaging parameters and a second volumetric dataset recorded using second imaging parameters, combining, on a voxel-by-voxel basis, first MRI data based on the first volumetric dataset and second MRI data based on the second volumetric dataset to produce a volumetric injury map, performing a structural-functional analysis of one or more brain networks or regions by refining the volumetric injury map using a volumetric eloquence map that specifies eloquent brain tissue within the one or more brain networks or regions to determine an impact of injury within the one or more brain networks or regions, and displaying a visualization of the determined impact of injury within the one or more brain networks or regions.
US11704796B2

The present disclosure provides a computer-implemented method, a device, and a computer program product for radiographic bone mineral density (BMD) estimation. The method includes receiving a plain radiograph, detecting landmarks for a bone structure included in the plain radiograph, extracting an ROI from the plain radiograph based on the detected landmarks, estimating the BMD for the ROI extracted from the plain radiograph by using a deep neural network.
US11704795B2

A framework for quality-driven image processing. In accordance with one aspect, image data and anatomical data of a region of interest are received. Zonal information is generated based on the anatomical data. Image processing is performed based on the image data to generate an intermediate image. One or more image quality metrics may then be determined for the intermediate image data using the zonal information. A processing action may be performed based on the one or more image quality metrics to generate a final image.
US11704793B2

A virtual conference in relation to diagnostic object data is created. Messages posted to the virtual conference from terminal devices of users participating in the virtual conference are received, and the posted messages are sent to the other terminal devices beside the terminal devices of the users. Information relating to the diagnostic object data is generated, which information is obtained in accordance with analysis results of analyzing the posted messages. The information relating to the diagnostic object data is sent to the terminal devices.
US11704786B2

A stress luminescence measurement method according to one aspect includes the steps of: placing a stress luminescent material on a surface of a sample; irradiating the stress luminescent material with excitation light; acquiring a first captured image by imaging the stress luminescent material during irradiation of the excitation light; applying a load to the sample; acquiring a stress luminescence image by imaging stress luminescence of the stress luminescent material; irradiating the stress luminescent material after removal of the load with the excitation light; acquiring a second captured image during irradiation of the excitation light by imaging the stress luminescent material in a state in which the load has been removed; and storing the first captured image and the second captured image in a memory in association with the stress luminescent image.
US11704782B2

A computer-implemented method allows a wait time to be determined automatically for a queue area. The queue is part of an environment and includes defined entrance and exit areas. A series of images showing the environment are received over time. A wait time associated with the queue area is determined by detecting a location of a object corresponding to a person in a first one of the images; associating the object with an identifier uniquely identifying the object in the first one of the images matching objects in later images; and determining the wait time based on times associated with an image in which an object associated with the identifier enters the queue area through the defined entrance area and later one of the images in which an object associated with the identifier exits the queue area through the defined exit area. An indication of the wait time is output.
US11704778B2

A method to compute a variable number of image planes, which are selected to better represent the scene while reducing the artifacts on produced novel views. This method analyses the structure of the scene by means of a depth map and selects the position in the Z-axis to split the original image into individual layers. The method also determines the number of layers in an adaptive way.
US11704775B2

A method for image capture includes identifying a bright spot in an image. A neural network is used to recover details in bright spot area through a trained de-noising process. Post-processing of the image is conducted to match image parameters of recovered details in the bright spot area to another area of the image.
US11704774B2

A system includes an image sensor, an imaging pipeline, and a display device. The image sensor is configured to capture a first frame of pixel data. The imaging pipeline is coupled to the image sensor to receive the first frame of pixel data. The imaging pipeline includes an adaptive noise filter. The adaptive noise filter is configured to filter a pixel based on noise in the pixel. The imaging pipeline is configured to output a second frame of pixel data. The second frame of pixel data includes pixels filtered by the adaptive noise filter. The display device is coupled to the imaging pipeline to receive the second frame of pixel data. The display device is configured to display the second frame of pixel data.
US11704772B2

A method comprising: obtaining an image; identifying a rotation angle for the image by processing the image with a first neural network; rotating the image by the identified rotation angle to generate a rotated image; classifying the image with a second neural network; and outputting an indication of an outcome of the classification, wherein the first neural network is trained, at least in part, based on a categorical distance between training data and an output that is produced by the first neural network.
US11704761B2

The present disclosure involves systems, software, and computer implemented methods for performing identity validation using a digital ID shared and trusted among a coalition of institutions. One example method includes receiving, via a communications module and from a first consortium member system, a set of input credentials from a first consortium member system associated with an operation, where the set of input credentials is associated with a user. A digital ID is identified corresponding to the set of input credentials and the first user, wherein each digital ID uniquely identifies a particular user and corresponds to at least one user account associated with other consortium member systems in a trusted consortium network. Using the other user accounts, additional user account information associated with the user is obtained and used in a verification operation.
US11704760B2

A system and method for determining optimal pathways to a predetermined goal, including generating a unique code for an event within a plurality of data records, where the same unique code will be generated for similar events; constructing at least one pathway using the unique codes based on the events, wherein the at least one pathway includes at least one segment; determining a goal, wherein the goal is the end of the at least one pathway; comparing the at least one pathway to other pathways sharing the determined goal; and optimizing the pathway for achievement of the determined goal.
US11704757B2

The described technology is a technique related to a server and method for displaying additional information on a 3D tour. In this case, the method for displaying additional information on a 3D tour performed by a server for providing a 3D tour service linked to a user terminal, the method includes providing a 3D tour comprising 3D information of a particular space to the user terminal, receiving coordinate information for a start point and an end point of an additional-information signpost to be created newly on the 3D tour displayed on the user terminal, creating an additional-information signpost connecting the start point and the end point, and overlappingly displaying the created additional-information signpost on the 3D tour.
US11704755B2

Approaches for determining scheduling assignments for the movement of people along a multi-segment path from a starting location to a destination location, are used to manage crowds, predict crowd behavior, and mitigate crowd turbulence. For example, to mitigate crowd congestion, routing solutions specifying an amount of time to spend at a destination and a departure time can be provided. Itinerary assignments, crowd data, and data associated with an event can be analyzed and weighted to determine scheduling assignments. Scheduling assignments can be validated against current crowd data and event data. Current crowd data and event data and crowd simulation can be used to predict future crowd behavior or crowd problems. Scheduling assignments can be rescheduled to mitigate crowd problems or emergencies.
US11704749B2

Networked utility services handle data-flow in a system to operate electrical vehicle charging stations. In an example, first and second utility companies may operate in first and second respective areas. A user may have a residence in the first area and may have an electric vehicle at a vehicle charging station in the second area. The user may provide identification at the vehicle charging station in the second area, and the user's vehicle may be charged at that location using electricity from the second utility. Data including the user's identification and the electricity consumed in the charging may be sent to the first utility serving the area including the user's residence. The first utility may bill the user for the electricity used to charge the user's vehicle at the remote vehicle charging station. The charging station, both utilities and/or other parties may share in the receipts.
US11704746B2

Implementations described herein disclose a method, an article of manufacture, and a system for displaying user profile information using extendible user profiles for user groups. A user profile with an application user profile is maintained. A value provided by a user joining a group for a group specific field is used to override a user profile field maintained in the application user profile.
US11704745B2

In one embodiment, a method includes receiving, from a client system associated with a user, a user request comprising a reference to a target object, accessing visual data from the client system, wherein the visual data comprises images portraying the target object and one or more additional objects, and wherein attribute information of the target object is recorded in a multimodal dialog state, resolving the reference to the target object based on the attribute information recorded in the multimodal dialog state, determining relational information between the target object and one or more of the additional objects portrayed in the visual data, and sending, to the client system, instructions for presenting a response to the user request, wherein the response comprises the attribute information and the determined relational information.
US11704734B2

Systems and methods are provided for efficiently processing withholding payments for constructive dividends. A party that receives constructive dividend payments also has a corresponding short position in a withholding financial instrument. A clearing house computer system adjusts the value of a withholding financial instrument in response to receipt of constructive dividend payments. The clearing house computer system determines a variation margin amount for the short party and processes a variation margin payment from the short party to a withholding account through the variation margin settlement system.
US11704729B1

Systems, methods, and computer-readable storage media utilized for determining access to a financial account held by a customer of a financial institution. One method includes establishing a communication session with a sensor device, wherein the financial institution computing system continuously receives sensor data over the communication session and receiving, from a point-of-sale (POS) terminal, a payment request. The method further includes retrieving, from the user device via an application programming interface (API), device data including at least application data and receiving, from the sensor device, the sensor data including at least one of geolocation data or biometric data of the sensor device. The method further includes determining the customer experienced an adverse event based on the sensor data and the device data and determining automatically an access level. The method further includes authorizing, by the processor, the payment request utilizing the financial account held by the customer to a designee.
US11704728B1

A method for detecting a fraud attempt in a communication session may include receiving, via at least one processor, a set of data associated with a communication session between a representative of an organization and a user, tagging, via the at least one processor, one or more items of the set of data as one or more tagged data items, applying, via the at least one processor, a fraud detecting algorithm to the one or more tagged data items to determine a percent likelihood of the user attempting to defraud the representative, generating, via the at least one processor, a visualization based on the percent likelihood, and displaying, via the at least one processor, the visualization via an electronic display during the communication session.
US11704721B2

An information processing device obtains order identification information capable of identifying an order placed by an order-placing person, transmits, as payment information, the order identification information, causes a printing process of a print medium to be executed, the print medium being capable of identifying the order identification information and gives, to another information processing device when an additional order placed by the order-placing person is received, an invalidation command which invalidates the order identification information in such a way that a payment with respect to the order identification information on an order not paid yet and placed by the same order-placing person is disabled.
US11704720B2

A computer system is provided that includes a paired list of data transaction requests on which a matching process is performed. There are multiple different types of data transaction requests that are stored in the paired list including data transaction requests with midpoint attributes and data transaction requests with discretion attributes. The computer system may determine how the multiple different types of data transaction requests may be match against each other. Two matching processes can be used to determine if a match exists between the first and second sides of the paired list. Matches that are determined at private values are not disseminated to third-parties via public market data feeds.
US11704716B2

A user identifies products offered by the user to an online system. The online system identifies a product offered by the user in an image by applying a identification model to the image. If the online system identifies a product in the image with at least a maximum confidence value, the online system automatically tags the post with metadata about the product or suggests a tag to the user. If an object in the image could be one of multiple products, the online system identifies the multiple products to the user, which may be ordered based on confidences of matching the object, allowing the user to select which product is in the image. If the unlisted identifies a product in the image with less than a minimum confidence value, the online system identifies the user's offered products and suggests that the user select a product.
US11704715B2

A quantum computing service includes connections to multiple quantum hardware providers that are configured to execute quantum circuits using quantum computers based on different quantum technologies. The quantum computing service enables a customer to define a quantum algorithm/circuit in an intermediate representation and select from any of a plurality of supported quantum computing technologies to be used to execute the quantum algorithm/quantum circuit.
US11704713B1

A customized glitter system includes glitters, a first glitter having a first color and a first type; a second glitter having a second color and a second type; a customer interface, the customer interface having one or more options from which a customer selects, the one or more options relating to the glitters; a container to receive a customized glitter mix based on the one or more options.
US11704707B2

Methods, software, products and systems of an identity authentication and verification system which provide one or more users to verify by electronic and non-electronic means the identity of a person with whom a user is interacting.
US11704701B1

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for selecting content items for presentation along with publisher resources. In one aspect, a method includes receiving a request for a content item for presentation at a user device with a publisher resource; receiving, from a content item provider a first selection value for each of a plurality of content items provided by the content item provider; determining, for each of the content items and using accessed distribution parameters, a second selection value distinct from the first selection value; and determining, for each of the content items and independent of a bid corresponding to the content item, a combined selection value based on the first selection value for the content item and the second selection value for the content item.
US11704700B2

Contextual data may be generated from assets in asset portfolios using metadata enrichment services. A recommendation engine may generate a set of recommended assets for presentation in a content stream based on the contextual data. Brand safety may be implemented using a brand safety policy that uses the contextual data as indicators of potentially offensive content. Advertisements included in the content stream may also be targeted based on the contextual data.
US11704698B1

A mobile advertising system includes a non-transitory computer readable configured to store instructions thereon; and a processor connected to the non-transitory computer readable medium. The processor is configured to execute the instructions for receiving gaze data from a viewing vehicle. The processor is configured to execute the instructions for receiving location information from an advertising vehicle. The processor is configured to execute the instructions for correlating the gaze data with the location information to determine whether the gaze data indicates viewing of an advertisement attached to the advertising vehicle. The processor is configured to execute the instructions for updating a histogram based on the correlation between the gaze data and the location information. The processor is configured to execute the instructions for generating a travel plan for increasing advertising effectiveness for the advertisement. The processor is configured to execute the instructions for transmitting the travel plan to the advertising vehicle.
US11704695B2

Methods, apparatus, systems, and articles of manufacture for communication with an audience metering device are disclosed. An example apparatus includes one or more non-transitory computer readable media, instructions in the apparatus, and one or more processors to execute the instructions. The example one or more processors are to segment a message to be transmitted to a configuration device into a first message segment and a second message segment, store the first message segment in a characteristic memory, and transmit a first advertisement to the configuration device when the first message segment is stored in the characteristic memory. Additionally, the example one or more processors are to after the first message segment has been gathered by the configuration device, store the second message segment in the characteristic memory and transmit a second advertisement to the configuration device when the second message segment is stored in the characteristic memory.
US11704681B2

A neurological profile associated with introversion/extroversion levels, simultaneous visual element processing capability, and/or dynamism processing capability, etc., is determined to select market categories and stimulus material targeted to the particular neurological profile. The neurological profile is determined using information such as user input, user activity, social and environmental factors, genetic and developmental factors, and/or neuro-response data. The neurological profile can be matched with corresponding neurological profile templates to select market categories and stimulus material.
US11704677B2

Techniques are provided for customer support ticket aggregation. One method comprises obtaining a customer support ticket; extracting a topic of the customer support ticket using a topic model based on natural language processing techniques; converting the customer support ticket to a topic vector representation that identifies the extracted topic and comprises a list of words describing the topic based on a collection of processed customer support tickets; extracting features from the customer support ticket; generating a fingerprint for the customer support ticket that comprises the topic vector representation and the extracted features; applying the fingerprint to a machine learning similarity model that compares the fingerprint to fingerprints of processed customer support tickets from the collection of processed customer support tickets; and identifying a processed customer support ticket from the collection of processed customer support tickets that is related to the customer support ticket.
US11704676B2

A method for managing payment submissions includes receiving, at an acquirer computing system, an authorization request submitted by a merchant computing system for a transaction of a predefined amount, the merchant computing system being associated with a merchant, and the authorization request identifying account information for an account that is associated with a payment card network and an issuer processor; and re-transmitting the authorization request for less than the predefined amount and greater than a configurable threshold value, until the authorization request is approved by the issuer processor or until the authorization request falls below the configurable threshold value.
US11704675B2

A system for detecting a fraudulent ATM transaction is disclosed. The system relates to an ATM machine that receives a bank/ATM card from a customer. The ATM first attempts to read information from the card chip, but is unable to do so due to a read error. The ATM then instead reads the information from the magnetic strip, and initiates a fraud detection procedure. In one such procedure, the ATM uses a local wireless access point to detect a customer's device, such as a phone, in the vicinity of the ATM. In another such procedure, the ATM communicates with a backend server. The backend server then determines the location of the customer device either by transmitting a message to request authorization, or by utilizing GPS or other location-detection means on the customer device to determine whether the customer device is within the ATM vicinity.
US11704671B2

A transformation-as-a-service apparatus, system and method are described, where the transformation converts financial messages from one format to another (such as SWIFT format to ISO 20022 format, etc), storing the original and transformed messages for future access by a token. The transformation service also includes a permissions and access control mechanism for allowing access to the financial messages based on requestor permissions when requested via the token.
US11704669B1

Arrangements for payment and recommendation control are provided. In some aspects, contextual data may be received from a user. For instance, data such as calendar data may be received and an event may be identified. Based on the event, a pre-authorized amount may be identified for payment associated with the event. The system may receive a request for payment and event details. The amount may be compared to the pre-authorized amount and, if more than the pre-authorized amount, a request for payment authorization may be transmitted to a user device. If the amount is not more than the pre-authorized amount, expected location data of the user may be received and current location data of the user may be requested from a user device. The location data may be compared and, if the locations match, the payment may be authorized and automatically processed.
US11704663B2

A system for blockchain-based unique identifiers and decentralized payments including a first computerized system that includes a unique identifier, a second computerized system including a gateway device that can communicate with a blockchain network, generate a transaction to transfer a token value responsive to receiving the unique identifier and synchronize the generated transaction to the blockchain network. One of the first computerized system and the second computerized system is installed in a vehicle and the other is installed in a fixed structure.
US11704656B2

A zero-step authentication system and method which uses wireless mobile devices to automatically make payments in a secure manner without requiring the customer to handle his or her mobile device. The system and method uses a payment facilitation device at the business location which automatically detects and recognizes registered mobile devices, displays a photo of the customer to a business employee for identity confirmation, and automatically deducts payments for purchases from a pre-authorized customer account. The customer account is managed by a payment processing server, which stores the customer account data, makes appropriate deductions, sends confirmation of deductions to the customer's mobile device, and automatically refills the customer's account by making pre-authorized charges to the customer's banking institution.
US11704655B2

Location polygons are defined along traffic lanes and parking spaces to facilitate determination of the location of a vehicle relative to features associated with the location polygons. The location polygons are used, in one application, to identity entrance and exit of a special toll lane along a roadway, and to ensure that the vehicle properly enters and exits the tolling lane.
US11704654B2

A device and method for waveform transmission of transaction card data to a merchant point-of-sale device are provided. The device includes a memory device for storing data, a processor, and a transmitter. The device is programmed to receive transaction card data that mimics data stored within a magnetic stripe associated with a transaction card, convert the transaction card data to a first data file for storage within the memory device, transmit the first data file to the transmitter, and transmit a first waveform from the transmitter to the POS device, wherein the first waveform includes changes in a magnetic field that represent the transaction card data.
US11704650B2

Images are captured of a customer during a transaction at a transaction terminal along with images associated with items of the transaction and any bags or cart used to hold the items. The images are processed to track any movement and locations of the customer, items, bags, and cart relative to a known location of the transaction terminal. When a transaction payment is required for the transaction and movement is detected in a direction that is moving away from the transaction terminal before a payment notification is received for the transaction, one or more alerts are raised as an indication to staff and/or security systems of a potential in-progress walk-away theft.
US11704648B2

A method of payment terminal operation, including: receiving a payment collection request for a payment from an application, generating a payment initiation request for the payment, sending the payment initiation request to a secure processing system, switching the secure processing system from operation in an unsecured mode to operation in a secured mode in response to receipt of the payment initiation request, facilitating payment information entry, and receiving a payment response notification, generated based on the payment information, at the main processor.
US11704640B2

Introduced here is a technology for automatic notification of an invoice for a customer based on identification of a customer identifier included in transaction data received from a point-of-sale (POS) system of a particular merchant (“the invoice technology”). The notification can include a promotion to provide an incentive to the customer to pay the invoice. The notification can be presented on a display of the POS system. Alternatively, the notification can be presented in a receipt for the transaction conducted at the POS system, where that receipt can be transmitted for display at a user device of the customer. For example, the receipt can be in the form of an email message or a text message. Upon notification of the invoice, the customer can submit a payment for that invoice (“invoice payment”) in exchange for the promotion.
US11704634B1

A system, method and computer-readable medium are provided to enable digital bank endorsement. A digital image of a back side of a check may be placed in a computer memory. Appropriate coordinates for a bank endorsement may be determined. A bank endorsement may be automatically generated. The digital image may then be electronically altered by overlaying, merging, or rendering text of the generated bank endorsement. A modified digital image may be combined with an image of the front side of the check and stored and/or exported to check clearing operations.
US11704633B2

Systems and methods for transferring funds from an acquirer processor account to one or more financial accounts. The transferring of the funds can be directed by one or more settlement rules defined by a merchant.
US11704630B2

The disclosure relates to a life prediction system for a fan of a lamp. The system comprises a fan signal detecting module to detect at least one working parameter of the fan; and a micro control unit to receive the working current signal, the environment temperature signal and the working rotation speed signal of the fan. The detecting module comprises a current detecting unit to detect a working current of the fan and output a working current signal; a temperature detecting unit to detect a working environment temperature of the fan and output an environment temperature signal; and a rotation speed detecting unit to detect and output a working rotation speed signal of the fan. The micro control unit calculates a predicted residual life of the fan based on the received working current signal, the environment temperature signal, the working rotation speed signal, through the life model of the fan.
US11704620B2

Provided is an estimating system including: at least one memory configured to store computer program code; and at least one processor configured to access said at least one memory and operate according to said computer program code, said computer program code including: via point acquisition code configured to cause the at least one processor to acquire a position of a via point, wherein the route is a path followed by a mobile object when the mobile object moves toward a destination; staying time period code configured to cause the at least one processor to estimate, based on the position of the via point, a staying time period; and arrival time code configured to cause the at least one processor to estimate, by including the staying time period, an arrival time of the mobile object at the destination.
US11704617B2

Systems and methods for modeling and analysis of commerce platform system infrastructure provided by cloud services provider systems to a commerce platform are described. The method may include receiving a cloud services provider spending report generated by a cloud service provider system, wherein the cloud services provider spending report comprises information indicative of costs of cloud services provider resource usage by the commerce platform system over a period of time, and receiving a service report for one or more systems of the commerce platform, wherein the service report comprises information indicative of execution of services of the one or more systems of the commerce platform over the period of time. A directed graph may then be generated that models costs of commerce platform system service usage at the cloud services provider system. The method may also include performing an analysis of the directed graph to attribute cloud service provider system cost information to the commerce platform system service usage at the cloud services provider system, and generating a report indicating cloud service provider system costs attributable services of the commerce platform system.
US11704612B2

The supply chain management apparatus includes: an input unit that receives input information indicating a change in market conditions; a storage unit that stores supply chain information in which constituent companies of a supply chain, T&Cs information in which T&Cs of each of the constituent companies of the supply chain is registered, and a condition for a key performance indicator which should be satisfied, the condition for a key performance indicator being set for each of the constituent companies; a T&Cs calculation unit that, when the input information is received, calculates a supply chain plan corresponding to the change in the market conditions indicated by the input information based on a predetermined calculation method, and when a key performance indicator calculated based on the supply chain plan does not meet the condition for the key performance indicator, changes the T&Cs so that the key performance indicator is optimal.
US11704611B2

Embodiments optimize inventory allocation of a retail item, where the retail item is allocated from a plurality of different fulfillment centers to a plurality of different customer groups. Embodiments receive historical sales data for the retail item and estimate demand model parameters. Embodiments generate a network including first nodes corresponding to the fulfillment centers, second nodes corresponding to the customer groups, and third nodes between the first nodes and the second nodes, each of the third nodes corresponding to one of the second nodes. Embodiments generate an initial feasible inventory allocation from the first nodes to the second nodes and solves a minimum cost flow problem for the network to generate an optimal inventory allocation.
US11704599B2

A system including a machine learning processing device and a memory device with microbumps is disclosed. A machine learning processing device is for performing a machine learning operation, where the machine learning processing device includes a first set of microbumps. A memory device is for storing data for the machine learning operation, where the memory device includes a second set of microbumps. The first set of microbumps of the memory device are coupled with the second set of microbumps of the machine learning processing device. The first set of microbumps of the memory device and the second set of microbumps of the machine learning processing device are to transmit the data for the machine learning operation.
US11704589B1

Disclosed are various embodiments for automatically identifying whether applications are static or dynamic. In one embodiment, code of an application is analyzed to determine instances of requesting data via a network in the application. Characteristics of the instances of requesting data via the network are provided to a machine learning model. The application is automatically classified as either dynamic or static according to the machine learning model.
US11704587B2

Quantum repeater systems and apparatus for quantum communication. In one aspect, a system includes a quantum signal receiver configured to receive a quantum field signal; a quantum signal converter configured to: sample quantum analog signals from a quantum field signal received by the quantum signal receiver; encode sampled quantum analog signals as corresponding digital quantum information in one or more qudits, comprising applying a hybrid analog-digital encoding operation to each quantum analog signal and a qudit in an initial state; decode digital quantum information stored in the one or more qudits as a recovered quantum field signal, comprising applying a hybrid digital-analog decoding operation to each qudit and a quantum analog register in an initial state; a quantum memory comprising qudits and configured to store digital quantum information encoded by the quantum signal converter; and a quantum signal transmitter configured to transmit the recovered quantum field signal.
US11704579B2

Aspects of the present disclosure relate to earth modeling using machine learning. A method includes receiving detected data at a first depth point along a wellbore, providing at least a first subset of the detected data as first input values to a machine learning model, and receiving first output values from the machine learning model based on the first input values. The method includes receiving additional detected data at a second depth point along the wellbore, providing at least a second subset of the additional detected data as second input values to the machine learning model, and receiving second output values from the machine learning model based on the second input values. The method includes combining the first output values at the first depth point and the second output values at the second depth point to generate an updated model of the wellbore, the updated model comprising an earth model.
US11704570B2

A learning device includes a structure search unit that searches for a first learned model structure obtained by selecting search space information in accordance with a target constraint condition of target hardware for each of a plurality of convolution processing blocks included in a base model structure in a neural network model; a parameter search unit that searches for a learning parameter of the neural network model in accordance with the target constraint condition; and a pruning unit that deletes a unit of at least one of the plurality of convolution processing blocks in the first learned model structure based on the target constraint condition and generates a second learned model structure.
US11704562B1

A system including a machine learning accelerator (MLA) hardware configured to perform machine-learning operations according to native instructions; an interpreter computing module configured to: generate, based on virtual instructions, machine language instructions configured to be processed by a processing hardware implementing the interpreter computing module; and cause the processing hardware to perform machine-learning operations according to the machine language instructions; and a compiler computing module associated with the MLA hardware, the compiler computing module configured to: receive instructions for performing an inference using a machine-learning model; based on the received instructions: generate the native instructions configured to be processed by the MLA hardware, the native instructions specifying first machine-learning operations associated with performing the inference; and generate the virtual instructions configured to be processed by the interpreter computing module, the virtual instructions specifying second machine-learning operations associated with performing the inference.
US11704560B2

A method includes receiving interaction data that indicates, for each given interaction among multiple interactions that occurred at a client device, (i) an event type an (ii) a delay period specifying an amount of time between the given event and a previous event that occurred prior to the given event, encoding each given interaction into an encoded interaction having a standardized format that is a combination of (i) the event type and (ii) the delay period, generating an interaction signature that includes sequence of encoded interactions, processing the sequence of encoded interactions using a model trained to label sequences of user interactions as valid or invalid, including labelling, using the model, a sequence of encoded interactions as invalid, and preventing distribution of a set of content to an entity that performed the sequence of encoded interactions in response to a subsequently identified request to provide content to the entity.
US11704558B2

A method and a system for training a machine learning algorithm (MLA) for object classification. The machine learning algorithm includes an embedding layer and a classification layer. A set of embedding indices representing a reference object is received. The set of embedding indices has been generated based on a byte representation of the reference object. A label associated with the reference object indicative of a reference class the objects belongs to is received. The MLA is iteratively trained to classify objects by embedding the set of embedding indices to obtain an input vector and by predicting an estimated class based on the input vector, and updating a parameter of at least one of the embedding layer and the updated embedding layer. The set of embedding indices is generated by parsing the byte representation to obtain byte n-grams and by applying a hash function on the byte n-grams.
US11704557B2

Systems and methods for generating an interference prediction for a target well are disclosed herein. A computing system generates a plurality of interference metrics for a plurality of interference events. For each well, the computing system generates a graph based representation of the well and its neighboring wells. The computing system generates a predictive model using a graph-based model by generating a training data set and learning, by the graph-based model, an interference value for each interference event based on the training data set. The computing system receives, from a client device, a request to generate an interference prediction for a target well. The computing system generates, via the predictive model, an interference metric based on the one or more metrics associated with the target well.
US11704556B2

Embodiments relate to systems and methods to optimize quantization of tensors of an AI model. According to one embodiment, a system receives an AI model having one or more layers. The system receives a number of input data for offline inferencing and applies offline inferencing to the AI model based on the input data to generate offline data distributions for the AI model. The system quantizes one or more tensors of the AI model based on the offline data distributions to generate a low-bit representation AI model, where each layer of the AI model includes the one or more tensors, where the one or more tensors include the one or more tensors. In one embodiment, the system applies online inferencing using the low-bit representation AI model to generate online data distributions for a feature map, and quantizes a feature map tensor based on the online data distributions.
US11704541B2

There is described a neural network system for generating a graph, the graph comprising a set of nodes and edges. The system comprises one or more neural networks configured to represent a probability distribution over sequences of node generating decisions and/or edge generating decisions, and one or more computers configured to sample the probability distribution represented by the one or more neural networks to generate a graph.
US11704536B1

Disclosed approaches for convolving input feature maps in a neural network include a circuit arrangement circuit that includes memory circuitry and convolution circuitry. The memory circuitry is configured to store K NxN first filters, and C 1x1 second filters, wherein N ≥ 1, and 1 < K < C. The convolution circuitry is coupled to the memory circuitry and configured to convolve a three-dimensional input feature map with the K NxN first filters into an intermediate volume having a depth of K, and convolve the intermediate volume with the C 1x1 second filters into an output feature map having a depth of C.
US11704528B2

Disclosed is a method of gathering data from a hybrid RFID chip to determine usage of an item or article of clothing using a mobile device like a phone, laptop, or tablet. The hybrid RFID chip consists of a processor, a memory, a radio transceiver, a power harvesting antenna, and an impedance circuit that converts ambient radio frequency (RF) energy to electrical energy. The RFID chip receives a first power level from ambient RF energy and periodically broadcasts an identity. The mobile device can receive the broadcast identity, store the identity, transmit the identity and location to a remote server, and receive a notification message from the remote server. The remote serve can determine usage of the item or article of clothing by comparing current records to previous records of RFID chip identity, location, and mobile device application identity.
US11704524B2

Aspects of the present disclosure involve systems, methods, devices, and the like for generating dynamic machine readable codes. In one embodiment, a system is introduced that enables the analysis of user information for the generation of the dynamic machine readable code. In response to the analysis, using middleware on a multi-tier system, user information is embedded onto the dynamic machine readable code. The embedded user information can be captured during the transaction enabling the presentation of customized content which can be used to provide a user friendly interface for the transacting while detecting incorrect account usage. In another embodiment, in conjunction with the dynamic machine readable code, additional user and/or device features are captured during the processing of a transaction such that the combination facilitate fraudulent activity detection.
US11704521B2

An image forming apparatus includes: a nozzle head in which nozzles that ejects ink is arranged in a first direction; a moving mechanism that moves a recording medium relative to the nozzle head; an image acquirer that acquires image data; a quantization processor that quantizes density of pixels forming an image based on the image data; a grouping processor that groups adjacent pixel positions into one group in the quantized data; and a rearrangement processor that rearranges a quantized pixel value at each pixel position in the group that is grouped, wherein the grouping processor groups such that a direction intersecting the first direction is set to a second direction, arrangement of groups in the first direction is set to a row, rows is arranged in the second direction, and a row in which an initial position of the row is different at least by one pixel is included.
US11704520B2

An image forming apparatus has an office direct print function, and when a non-installed font that is not installed in the image forming apparatus is included in application data, a font substitution guidance screen is displayed on a display. A drop-down list that is an operator for selecting a substitute font is provided in the font substitution guidance screen, whereby a user can arbitrarily select a substitute font. The font substitution guidance screen displays also a sample character group having a typeface according to the selected substitute font.
US11704507B1

A method for providing automatic interpretation may include receiving, by a processor, audible speech from a speech source, generating, by the processor, in real-time, a speech transcript by applying an automatic speech recognition model on the speech, segmenting, by the processor, the speech transcript into speech segments based on a content of the speech by applying a segmenter model on the speech transcript, compressing, by the processor, the speech segments based on the content of the speech by applying a compressor model on the speech segments, generating, by the processor, a translation of the speech by applying a machine translation model on the compressed speech segments, and generating, by the processor, audible translated speech based on the translation of the speech by applying a text to speech model on the translation of the speech.
US11704505B2

A method includes obtaining n pairs of translation sentences of a source language and a target language, where each of the n pairs of translation sentences includes a source language sentence and a target language sentence that are translations of each other, extracting a source language segment from each source language sentence in the n pairs of translation sentences using an extraction rule of the source language, extracting a target language segment from each target language sentence in the n pairs of translation sentences, and generating an extraction rule of the target language based on n target language segments extracted from n target language sentences.
Patent Agency Ranking