-
公开(公告)号:CN105644795A
公开(公告)日:2016-06-08
申请号:CN201410650781.9
申请日:2014-11-15
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: B64D45/00
Abstract: 本发明属于高超声速飞行器技术领域,具体涉及一种旋转式分插热防护装置,其中分插安装在底遮板上,底遮板的上表面设置有长条状的限位条,防热盖板用于盖住分插上方避免分插直接受到热流冲刷,转轴为中部带有阶梯的圆柱形,转轴的上部安装在底遮板上,中部阶梯位于底遮板的下部,扭簧安装在转轴的下部;套筒套在转轴下部外,固定在底遮板下表面;筒盖与套筒底部连接;筒盖上开有小孔,扭簧的自由端穿过筒盖的小孔。有益效果:采用防热盖板、转轴、螺钉、扭簧、套筒、调整垫片、筒盖对分插进行热防护。可用于飞行器底遮板或飞行器舱段其他裸露在外的分插的热防护。此结构具有连接可靠、结构紧促、有效、耐高温等优点。
-
公开(公告)号:CN114152358A
公开(公告)日:2022-03-08
申请号:CN202111310665.9
申请日:2021-11-04
Applicant: 北京临近空间飞行器系统工程研究所
Abstract: 本发明适用于测量装置领域,提供了一种复合端头的测量装置及成型工艺,包括:第一端部,容置有测量器,所述测量器设置于所述第一端部的头部;第二端部,设置于所述第一端部的一侧,支撑所述所述第一端部,并具有供所述测量器所连接的导向通过的过孔;防热被,覆盖所述第一端部,并与所述第一端部一体连接,以覆盖所述测量器。
-
公开(公告)号:CN113184214A
公开(公告)日:2021-07-30
申请号:CN202110448755.8
申请日:2021-04-25
Applicant: 北京临近空间飞行器系统工程研究所
IPC: B64F5/00
Abstract: 本发明涉及降低翼舱体连接处气动加热尾翼局部外形优化方法及结构,所述尾翼的底部并非全部与舱体相连,尾翼前端连接处向后一定距离被切去后,底部呈台阶状,使尾翼前缘底部与飞行器舱体表面之间保持一定间隙,间隙下方为舱体壁面,上方为平整的翼底面,该底面垂直于翼的纵向对称面,平行于飞行器轴向。本发明在保证飞行器气动特性不变的前提下,实现了有效降低舱体‑尾翼前缘连接处热环境的目的。
-
公开(公告)号:CN110626519B
公开(公告)日:2021-06-11
申请号:CN201910791669.X
申请日:2019-08-26
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明提供了一种降低对流动转捩影响的飞行器表面缺陷尺度控制方法,首先利用理论分析手段或地面试验手段对飞行器开展流动转捩研究,得出满足边界层转捩不受影响的表面缺陷尺度的约束范围;然后针对产生缺陷的部段开展气动加热、结构温度场和变形场联合仿真分析,从结构变形计算结果中提取得到飞行过程中产生缺陷的各部段热变形量数据;最后利用初始缺陷尺度抵消热变形量的策略,根据约束范围和热变形量数据设计初始应加工的缺陷尺度,确保飞行过程中实际缺陷尺度满足约束范围。本发明可以合理且有效的控制飞行器表面缺陷尺度,降低其诱发表面提前转捩的可能,确保飞行器热防护系统可靠工作。
-
公开(公告)号:CN108132112A
公开(公告)日:2018-06-08
申请号:CN201711115268.X
申请日:2017-11-13
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Inventor: 李宇 , 陈伟华 , 黄建栋 , 刘国仟 , 聂亮 , 刘宇飞 , 檀妹静 , 景丽 , 高扬 , 聂春生 , 颜维旭 , 陈轩 , 周禹 , 曹占伟 , 王振峰 , 季妮芝 , 高翔宇 , 于明星 , 闵昌万 , 陈敏
Abstract: 本发明提供了一种高超声速飞行器表面热流辨识装置及设计方法,属于高超声速飞行器热参数测量技术领域。该装置包括:热传导敏感元件、敏感元件隔热套、敏感元件压板、温度传感器,热传导敏感元件为柱状结构,敏感元件隔热套为带通孔的柱状结构,热传导敏感元件位于敏感元件隔热套通孔中,与敏感元件隔热套间隙配合,敏感元件一侧与隔热套外表面平齐,形成测量端面,另一侧底部安装有温度传感器,敏感元件压板压住热传导敏感元件,与敏感元件隔热套间隙配合安装,敏感元件隔热套、敏感元件与敏感元件隔热套之间的间隙以及敏感元件压板共同阻隔热传导敏感元件除测量端面以外的部分与外部环境之间热量交换。本发明克服了传统热流传感器对于长时间高热流测量的适应性差以及传感器尺寸大、重量大、安装受限大、难以实现密集测量问题。
-
公开(公告)号:CN105644795B
公开(公告)日:2017-11-28
申请号:CN201410650781.9
申请日:2014-11-15
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: B64D45/00
Abstract: 本发明属于高超声速飞行器技术领域,具体涉及一种旋转式分插热防护装置,其中分插安装在底遮板上,底遮板的上表面设置有长条状的限位条,防热盖板用于盖住分插上方避免分插直接受到热流冲刷,转轴为中部带有阶梯的圆柱形,转轴的上部安装在底遮板上,中部阶梯位于底遮板的下部,扭簧安装在转轴的下部;套筒套在转轴下部外,固定在底遮板下表面;筒盖与套筒底部连接;筒盖上开有小孔,扭簧的自由端穿过筒盖的小孔。有益效果:采用防热盖板、转轴、螺钉、扭簧、套筒、调整垫片、筒盖对分插进行热防护。可用于飞行器底遮板或飞行器舱段其他裸露在外的分插的热防护。此结构具有连接可靠、结构紧促、有效、耐高温等优点。
-
公开(公告)号:CN119084421A
公开(公告)日:2024-12-06
申请号:CN202411146862.5
申请日:2024-08-21
Applicant: 北京临近空间飞行器系统工程研究所
Inventor: 刘国仟 , 孙格靓 , 徐春铃 , 王永海 , 白金泽 , 张敬义 , 姚睿 , 刘晓明 , 李彬 , 周禹 , 檀妹静 , 刘全军 , 王欢欢 , 王璐瑶 , 田川 , 曹占伟 , 刘宇飞 , 付斌 , 董耀军 , 杨鑫鑫
IPC: F16B1/02
Abstract: 本发明涉及一种端头与石英透波罩一体化成型耐高温可靠性连接结构,属于高温可靠连接技术领域;包括球头、端头柄和石英透波罩;其中,球头为轴向水平放置锥体结构,且球头的头端为球体结构;端头柄同轴对接在球头的尾端处;球头和端头柄为一体化结构;石英透波罩为轴向水平放置的锥柱体结构;石英透波罩的轴向尾端设置有锥柱形内腔;石英透波罩的轴向头端设置有与端头柄形状对应的通孔;端头柄沿轴向伸入石英透波罩的通孔中,实现球头与石英透波罩的对接;本发明解决了胶粘接方案在高温下端头和石英透波罩之间由于高温热匹配会发生松动的难题,解决了石英透波罩由于材料本征脆性无法加工可靠连接螺纹孔的难题。
-
公开(公告)号:CN116588314A
公开(公告)日:2023-08-15
申请号:CN202310441811.4
申请日:2023-04-23
Applicant: 北京临近空间飞行器系统工程研究所
IPC: B64C1/00
Abstract: 一种适用于伸缩翼滑动过程的组合式热密封结构,该结构包括测伸缩翼、固定翼、柔性石英毛刷、柔性石英毡;固定翼为空腔结构,伸缩翼放置在固定翼空腔中,伸缩翼外表面设置凸台,伸缩翼外表面凸台上设置凹槽,柔性石英毡安装在凹槽内,柔性石英毛刷固定在伸缩翼外表面。本发明通过柔性石英毛刷的结构设计,实现了伸缩翼在伸缩动态过程中的热密封,通过柔性隔热毡的结构设计,实现了伸缩翼完全伸出、完全缩回状态下的静态热密封,解决了大幅度运动部件动态热密封的难题。
-
公开(公告)号:CN111780948B
公开(公告)日:2022-01-04
申请号:CN202010525480.9
申请日:2020-06-10
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G01M9/06
Abstract: 本发明提供一种高超声速飞行试验中飞行器边界层转捩过程特性的测量方法,步骤如下:1)对飞行器周围流场进行仿真计算,获取飞行器表面流动特性;2)确定飞行器表面适合进行边界层转捩过程测量的区域;3)对飞行器的表面热流和结构热响应进行仿真计算,获取沿整个飞行剖面的飞行器表面热流和结构温度计算结果,对热流传感器和温度传感器进行选型;4)评估转捩测量区域内传感器安装的可行性;5)根据飞行器表面流动和转捩特性的分析结果,确定传感器位置、传感器测点个数和传感器测点间距;6)对步骤1)‑5)确定的转捩过程测量方案获取的飞行试验数据进行分析,并画出表面热流或温度沿流向变化的曲线;7)对热流或温度沿流向变化曲线的变化规律进行分析,确定边界层转捩过程特性。
-
公开(公告)号:CN111780948A
公开(公告)日:2020-10-16
申请号:CN202010525480.9
申请日:2020-06-10
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G01M9/06
Abstract: 本发明提供一种高超声速飞行试验中飞行器边界层转捩过程特性的测量方法,步骤如下:1)对飞行器周围流场进行仿真计算,获取飞行器表面流动特性;2)确定飞行器表面适合进行边界层转捩过程测量的区域;3)对飞行器的表面热流和结构热响应进行仿真计算,获取沿整个飞行剖面的飞行器表面热流和结构温度计算结果,对热流传感器和温度传感器进行选型;4)评估转捩测量区域内传感器安装的可行性;5)根据飞行器表面流动和转捩特性的分析结果,确定传感器位置、传感器测点个数和传感器测点间距;6)对步骤1)-5)确定的转捩过程测量方案获取的飞行试验数据进行分析,并画出表面热流或温度沿流向变化的曲线;7)对热流或温度沿流向变化曲线的变化规律进行分析,确定边界层转捩过程特性。
-
-
-
-
-
-
-
-
-