一种嵌入式大气测量装置性能评估方法

    公开(公告)号:CN105628051B

    公开(公告)日:2018-08-21

    申请号:CN201410591736.0

    申请日:2014-10-29

    Abstract: 本发明涉及大气数据测量装置测量性能评估技术领域,具体公开了一种嵌入式大气测量装置性能评估方法。该方法包括:1、测量获得飞行试验剖面内气象数据;2、测量导弹实际飞行弹道参数;3、测量压力场数据及大气参数解算数据;4、修正弹道参数,获得基准来流参数;5、进行气动仿真预示,大气测量装置有效进行大气参数解算;6、从而获得大气测量装置大气参数测量精度,以评价大气测量装置测量性能是否满足指标要求。该方法可获得较高精度的实际飞行来流基准大气参数,在马赫数2.0~3.5范围内实际飞行来流马赫数偏差为±0.03;‑10°~+10°范围内攻角、侧滑角精度为±0.2°,用此高精度基准大气参数数据可对嵌入式大气测量装置测量精度进行有效评估。

    一种锥型面气动压力场实时高精度获取方法

    公开(公告)号:CN105628325B

    公开(公告)日:2018-06-26

    申请号:CN201410591730.3

    申请日:2014-10-29

    Abstract: 本发明涉及气动压力场高精度测量技术领域,具体公开了一种锥型面气动压力场实时高精度获取方法。该方法包括:1、建立高精度头锥型面及测压孔结构模型及测压模型;2、获得不同高度、马赫数、攻角、侧滑角状态飞行器表面压力场数据;3、通过风洞试验吹风获得1:1头锥型面及测压孔高精度压力数据;4、将飞行器表面压力场数据与风洞吹风高精度测压数据转换获得不同状态高精度基准压力数据库;5、将实时测量压力与基准压力数据库进行差值比较,剔除异常压力,为大气参数解算提供可靠的高精度压力分布数据。该方法解决了气动压力场高精度测量难题,在飞行高度0~20km、马赫数2~4Ma、攻角‑12°~+12°范围内,压力场数据获取精度高,压力偏差可小于±300Pa。

    一种锥型面气动压力场实时高精度获取方法

    公开(公告)号:CN105628325A

    公开(公告)日:2016-06-01

    申请号:CN201410591730.3

    申请日:2014-10-29

    Abstract: 本发明涉及气动压力场高精度测量技术领域,具体公开了一种锥型面气动压力场实时高精度获取方法。该方法包括:1、建立高精度头锥型面及测压孔结构模型及测压模型;2、获得不同高度、马赫数、攻角、侧滑角状态飞行器表面压力场数据;3、通过风洞试验吹风获得1:1头锥型面及测压孔高精度压力数据;4、将飞行器表面压力场数据与风洞吹风高精度测压数据转换获得不同状态高精度基准压力数据库;5、将实时测量压力与基准压力数据库进行差值比较,剔除异常压力,为大气参数解算提供可靠的高精度压力分布数据。该方法解决了气动压力场高精度测量难题,在飞行高度0~20km、马赫数2~4Ma、攻角-12°~+12°范围内,压力场数据获取精度高,压力偏差可小于±300Pa。

    一种嵌入式大气测量装置性能评估方法

    公开(公告)号:CN105628051A

    公开(公告)日:2016-06-01

    申请号:CN201410591736.0

    申请日:2014-10-29

    Abstract: 本发明涉及大气数据测量装置测量性能评估技术领域,具体公开了一种嵌入式大气测量装置性能评估方法。该方法包括:1、测量获得飞行试验剖面内气象数据;2、测量导弹实际飞行弹道参数;3、测量压力场数据及大气参数解算数据;4、修正弹道参数,获得基准来流参数;5、进行气动仿真预示,大气测量装置有效进行大气参数解算;6、从而获得大气测量装置大气参数测量精度,以评价大气测量装置测量性能是否满足指标要求。该方法可获得较高精度的实际飞行来流基准大气参数,在马赫数2.0~3.5范围内实际飞行来流马赫数偏差为±0.03;-10°~+10°范围内攻角、侧滑角精度为±0.2°,用此高精度基准大气参数数据可对嵌入式大气测量装置测量精度进行有效评估。

    一种基于热敏形状记忆合金的折叠翼舵小型化展开结构

    公开(公告)号:CN105620722A

    公开(公告)日:2016-06-01

    申请号:CN201410591664.X

    申请日:2014-10-29

    Abstract: 本发明涉及折叠翼舵展开技术领域,具体公开了一种基于热敏形状记忆合金的折叠翼舵小型化展开结构。一种基于热敏形状记忆合金的折叠翼舵小型化展开结构,该结构包括热定型处理过、状态为直线型的形状记忆合金,将形状记忆合金机械加工成折叠状态L型,并装配在飞行器本体与翼舵连接铰链的凹槽中,形状记忆合金在受热后可恢复为直线型状态。该结构可根据形状记忆合金的热敏感原理,利用启动热或加热装置的加热手段,大大较小致动装置的体积,相对于火工驱动、电液驱动,机构简化,没有复杂的管路和控制系统,可靠性大大增加,且该结构对飞行器影响小、系统复杂程度低、体积小重量轻、无电磁干扰等优势。

Patent Agency Ranking