一种基于移动式混联机器人的卫星加工工艺方法

    公开(公告)号:CN117697336A

    公开(公告)日:2024-03-15

    申请号:CN202311742473.4

    申请日:2023-12-18

    IPC分类号: B23P15/00 B23Q3/06 B23Q17/22

    摘要: 本发明公开了一种基于移动式混联机器人的卫星加工工艺方法,包括:搭建移动式混联机器人;通过移动式混联机器人,对卫星上的待加工特征进行铣面加工;在完成对待加工特征的铣面加工后,通过移动式混联机器人,对待加工特征进行钻孔加工和镗孔加工,在待加工特征上加工出安装孔和定位孔;其中,定位孔用于实现卫星与卫星载荷之间的定位,安装孔用于实现卫星与卫星载荷的连接。本发明所述的一种基于移动式混联机器人的卫星加工工艺方法,就加工过程涉及的具体工序给出了详细的操作流程,有效保证了卫星结构的加工精度,可满足卫星部装阶段载荷安装结构组合加工需求。

    一种适用于地外天体的触碰采样器

    公开(公告)号:CN111947965B

    公开(公告)日:2023-08-29

    申请号:CN202010688267.X

    申请日:2020-07-16

    IPC分类号: G01N1/04 G01N1/08

    摘要: 本发明涉及一种适用于地外天体的触碰采样器,包括:采样导流罩、气动冲击破岩机构、柔性弹簧等;采样导流罩位于所述触碰采样器底端,气体激励喷嘴位于采样导流罩内侧,气动冲击破岩机构安装在采样导流罩内侧,柔性弹簧安装在采样导流罩上端,气动展开机构安装在柔性弹簧上端,样品通道安装在气动展开机构内,一端与采样导流罩的内部的腔体相连接,另一端与样品容器连接;密闭门安装在样品通道中,样品容器固定于气动展开机构上端。本发明利用气动冲击破岩机构将星体表面进行破碎与剥离,同时通过气体激励与传输将表面样品吹进样品容器,完成回收,具有采样时间短、星表适应性强、可重复采样、采样可靠的特点。

    一种相对回转结构中的压扭分离力载测量方法

    公开(公告)号:CN109854224B

    公开(公告)日:2022-10-28

    申请号:CN201811437344.3

    申请日:2018-11-28

    IPC分类号: E21B44/00

    摘要: 一种相对回转结构中的压扭分离力载测量方法,外管与钻头连接端截短后通过外螺纹与弹性元件的下端连接,弹性元件的上端通过插槽与外管过渡连接段的下端连接,外管过渡连接段的上端通过插孔与外管截短端连接,外管截短长度等于外管过渡段连接段与弹性元件连接后的长度,传感元件放在弹性元件上,从外管过渡段连接段下端到传感元件下端的外部,并设有保护套,保护套、外管过渡连接段、截短后的外管通过螺钉连接,弹性元件底部螺纹和外管过渡段连接段将钻头、传感器截断后的外管连接在一起,并将钻头所受的轴向力和扭矩直接传递给力传感器,力传感器包括弹性元件、两个传感元件。

    基于激光跟踪仪的移动检测机器人大型构件外形重构方法

    公开(公告)号:CN111238375B

    公开(公告)日:2022-06-03

    申请号:CN202010183531.4

    申请日:2020-03-16

    IPC分类号: G01B11/00 G01B11/24

    摘要: 本发明涉及一种基于激光跟踪仪的移动检测机器人大型构件外形重构方法,包括如下步骤:(1)基于激光跟踪仪构建不同坐标系;在激光跟踪仪坐标系下,通过采用激光跟踪仪进行测量,从而构建全向移动平台坐标系、基准坐标系以及视觉测量系统坐标系;(2)进行模型的空间点可测性检查;(3)进行基于模型的空间点自动测量;(4)获取测量点云数据;(5)进行外形匹配评价,从而完成外形重构。本发明减少了测量反复、大量人工参与测量过程,提高了测量与评价的效率,保证了人员安全性。同时,本发明实现了在虚拟环境下控制物理的移动检测机器人系统,并通过激光跟踪仪现有功能消失位置偏差,达到以虚控实的过程。

    一种高强不锈钢薄壁锥齿轮的精密制造方法

    公开(公告)号:CN112059565B

    公开(公告)日:2022-04-12

    申请号:CN202010838193.3

    申请日:2020-08-19

    IPC分类号: B23P15/14

    摘要: 一种高强不锈钢薄壁锥齿轮的精密制造方法,属于航空航天和精密技术领域。本发明包括:下料然后粗加工,单边留3mm余量,并进行超声探伤;粗加工后去应力退火,减少齿坯加工应力;采用伞齿刨刨加工或铣齿机半精加工齿形,齿面余量0.5mm;进行真空淬火时效处理,这样在淬火前就完成了锥齿轮的半精加工,减少精加工加工量;精加工时采用锥齿轮磨齿机进行齿形的加工,可以实现高强不锈钢CF170薄壁锥齿轮的精密加工,目前最高能达到的齿轮精度为4级。本发明采用先半精加工后淬火最后精磨齿的工艺路线,淬火时通过专用工装保证零件结构精度,将淬火变形控制在很小的范围;磨齿后通过锥齿轮副的跑和改善了锥齿轮副齿面的接触情况。

    一种可移动超快激光加工机器人装备及加工方法

    公开(公告)号:CN112060103B

    公开(公告)日:2022-02-01

    申请号:CN202010791270.4

    申请日:2020-08-07

    摘要: 本发明公开了一种可移动超快激光加工机器人装备及加工方法,该装备包括:定位导航子系统,用于进行导航定位,输出实时定位信息;集成控制子系统,用于根据实时定位信息,控制全向智能移动平台运动;通过对工业机械臂和超快激光末端执行子系统的控制,完成对工业机械臂与待加工工件的对准以及对待加工工件的加工;全向智能移动平台,用于在集成控制子系统的控制下进行运动;工业机械臂,用于在集成控制子系统控制下运动至加工工位;超快激光末端执行子系统,用于对加工位姿信息进行实时监测并反馈。本发明旨在实现装备大范围灵活姿态调整、定位和局部高效高质量加工,完成卫星结构板、承力筒、大型天线展开臂等大型复材结构件的制造。

    一种基于5G技术的远程可监控多轴协同智能控制器

    公开(公告)号:CN111897253B

    公开(公告)日:2022-01-04

    申请号:CN202010621551.5

    申请日:2020-06-30

    IPC分类号: G05B19/042

    摘要: 一种基于5G技术的远程可监控多轴协同智能控制器,利用5G传输技术,实现在远程终端对厂房AGV的运动路径及运动参数进行修改,并能监测到AGV的实时运动数据。控制器接口丰富,利用脉冲/方向方式或CAN总线通讯方式控制多种电机协同运动,使AGV精确运动。此外根据AGV起始点与终点信息,采用“最小面积”方式规划AGV路径,使AGV从起始点向终点的行驶路径与起始点与终点连线所围成的面积最小,最大化缩小了AGV的行驶空间,大幅度减小了由于AGV行驶而对厂房产生的影响范围,避免了多台AGV同时执行不同任务时有可能造成的路径干涉问题,该控制器的控制精度极高,AGV运动定位精度达到±0.5mm。

    一种面向混联加工机器人的柔性化全向智能移动装备

    公开(公告)号:CN111806186B

    公开(公告)日:2021-12-07

    申请号:CN202010581811.0

    申请日:2020-06-23

    IPC分类号: B60G17/015 B60G17/08 B60S9/04

    摘要: 本发明一种面向混联加工机器人的柔性化全向智能移动装备,装备进入移动模式,机器人向指定工位移动前,由被动支撑单元(400)单独支撑底盘单元(100)切换为由全向移动单元(200)对底盘单元(100)单独支撑;全向移动单元(200)将机器人移动到指定工位;装备到达指定工位后,进入工作模式,由全向移动单元(200)对底盘单元(100)单独支撑切换为被动支撑单元(400)和力感知支撑单元(500)共同支撑,力感知支撑单元(500)能够实时监测地面支撑力,出现虚腿状态时调整地面支撑力,实现机器人加工过程的稳定支撑。

    基于工业机器人刚度测量加载装置和关节刚度辨识方法

    公开(公告)号:CN111168717B

    公开(公告)日:2021-11-16

    申请号:CN201911329301.8

    申请日:2019-12-20

    IPC分类号: B25J19/00

    摘要: 本发明公开了一种基于工业机器人刚度测量加载装置和关节刚度辨识方法,该装置包括:机器人本体、末端加载系统和变形测量系统;末端加载系统,包括:六维力传感器、机器人端连接法兰、载荷端连接法兰、滑轮组、砝码和挂钩;机器人端连接法兰的两端分别与机器人本体和六维力传感器连接;载荷端连接法兰的两端分别与滑轮组的绳索和六维力传感器连接;滑轮组上挂有砝码,实现对机器人本体末端的加载,所施加载荷通过六维力传感器读出;变形测量系统,包括:激光跟踪仪和三个激光靶球;其中,三个激光靶球通过靶标座安装在载荷端连接法兰上;激光跟踪仪用于对安装在载荷端连接法兰上的三个激光靶球进行跟踪测量。本发明操作简单,测量精度高,具有较好的通用性。