摘要:
An atomic layer deposition apparatus, having a first series of high pressure gas injection openings and a first series of exhaust openings that are positioned such that they together create a first high pressure/suction zone within each purge gas zone, wherein each first high pressure/suction zone extends over substantially the entire width of the process tunnel and wherein the distribution of the gas injection openings that are connected to the second purge gas source and the distribution of the gas exhaust openings within the first high pressure/suction zone, as well as the pressure of the second purge gas source and the pressure at the gas exhaust openings are such that the average pressure within the first high pressure/suction zone deviates less than 30% from a reference pressure which is defined by the average pressure within process tunnel when no substrate is present.
摘要:
A method for easily removing a deposition residue from deposition space components of a deposition apparatus in which substrates are treated for applying at least one layer using one of CVD, PECVD, ALD, PVD and evaporation. In a deposition apparatus having a deposition space that is bounded by deposition space walls at least one deposition treatment is performed to apply a layer on a substrate within the deposition space. The deposition space walls are provided with a coating. The deposition space walls are cleaned with a selective wet-etching treatment. The composition of the deposition space wall coating is adapted to the composition of the deposition residue that is deposited on the deposition space walls during the deposition treatment and the liquid etching agent that is used during the selective wet etching treatment, such that the deposition residue is removed without affecting the deposition space walls.
摘要:
A method for easily removing a deposition residue from deposition space components of a deposition apparatus in which substrates are treated for applying at least one layer using one of CVD, PECVD, ALD, PVD and evaporation. In a deposition apparatus having a deposition space that is bounded by deposition space walls at least one deposition treatment is performed to apply a layer on a substrate within the deposition space. The deposition space walls are provided with a coating. The deposition space walls are cleaned with a selective wet-etching treatment. The composition of the deposition space wall coating is adapted to the composition of the deposition residue that is deposited on the deposition space walls during the deposition treatment and the liquid etching agent that is used during the selective wet etching treatment, such that the deposition residue is removed without affecting the deposition space walls.
摘要:
A substrate processing apparatus (100) comprising a process tunnel (102) including a lower tunnel wall (122), an upper tunnel wall (142), and two lateral tunnel walls (128), said tunnel walls being configured to bound a process tunnel space (104) that extends in a longitudinal transport direction (7) and that is suitable for accommodating at least one substantially planar substrate (180) oriented parallel to the upper and lower tunnel walls (122, 142), the process tunnel being divided in a lower tunnel body (120) comprising the lower tunnel wall and an upper tunnel body (140) comprising the upper tunnel wall, which tunnel bodies (120, 140) are separably joinable to each other along at least one longitudinally extending join (160), such that they are mutually movable between a closed configuration in which the tunnel walls (122, 128, 42) bound the process tunnel space (104) and an open configuration that enables lateral maintenance access to an interior of the process tunnel.
摘要:
A method for processing solar cells comprising: - providing a vertical furnace to receive an array of mutually spaced circular semiconductor wafers for integrated circuit processing; - composing a process chamber loading configuration for solar cell substrates, wherein a size of the solar cell substrates that extends along a first surface to be processed is smaller than a corresponding size of the circular semiconductor wafers, such that multiple arrays of mutually spaced solar cell substrates can be accommodated in the process chamber, - loading the solar cell substrates into the process chamber; - subjecting the solar cell substrates to a process in the process chamber.
摘要:
Susceptors plates are formed having a minimum surface roughness. The wafer contact surfaces of the susceptor plates have a surface roughness Ra value of about 0.6 µm or more. The contact surface is otherwise flat and lacking in large protrusions. In addition, the susceptors have a low transparency to more closely match the heat absorption properties of the supported wafer. Advantageously, heat transfer from the susceptors to the wafers is highly uniform. Thus, using these susceptors to support the wafers during high temperature semiconductor processing (e.g., at > 1000°C) results in no or few crystallographic slip lines being formed on the wafers.