Abstract:
A spectrophotometer has a first photodetector (24) and a second photodetector (25) which is displaced spatially from the first photodetector in the direction of increasing wavelength in the spectrum. At any given time the second photodetector receives light at a wavelength which is substantially greater than that being received simultaneously by the first photodetector at that time. The first photodetector has a first range of wavelengths over which it is operable and a first upper operating limit, and the second photodetector has a second range of wavelengths over which it is operable and a second upper operating limit, the second range overlapping the first range and the second upper operating limit being greater than the first upper operating limit. Thus the range of operation is extended, and data in two different ranges is processed simultaneously. The spectrophotometer comprises a housing (1) containing a light source (11), a monochromator (15, 16, 18) and the photodetectors, there being a fibre optic connected to a probe (2) for transmitting light from the light source to a sample to be analysed and receiving light from the sample. Optical components are mounted to a chassis (26) of the housing rigidly, the chassis being connected to the housing by shock absorbing mounts (28, 29). The light source is mounted to the housing by means of an adjuster (24) providing for adjustment laterally with respect to the optical axis of the light source.
Abstract:
The disclosure relates to a portable and/or handheld bioagent detector and methodology described herein that is based in part on advanced Raman Chemical Imaging ('RCI') technology. According to one embodiment of the present disclosure, the detection system may include a fiber array spectral translator ('FAST') and may also include a probe which may include a complementary metal oxide semiconductor (CMOS) camera. The probe alleviates the need to place the main instrument close to an unconfined release of a potentially hazardous material and facilitates analysis of a sample that is situated in a hard-to-reach location while minimizing contamination of the detector and operator.
Abstract:
Eine Abtastvorrichtung für die punktweise Ausmessung der Farbeigenschaften eines Messobjekts umfasst eine Auflagefläche für das Messobjekt, einen Farbmesskopf, eine Antriebseinrichtung zur Bewegung des Farbmesskopfs über die Auflagefläche in wenigstens einer Dimension derselben und zur Höhenverstellung des Farbmesskopfs in Richtung senkrecht zur Auflagefläche sowie eine die Antriebseinrichtung ansteuernde und mit dem Farbmesskopf zusammenarbeitende Mess- und Antriebssteuerung. Sie ist mit einer elektronischen Abstandsregelung ausgestattet, welche mittels der Antriebseinrichtung für jeden Messpunkt den Abstand des Farbmesskopfs über dem Messort in Richtung senkrecht zur Auflagefläche auf einen Soll-Messabstand einstellt. Die elektronische Abstandsregelung arbeitet mit vom Farbmesskopf erzeugten Messwerten und daraus berechneten Abstandswerten. Die Abtastvorrichtung ist aufgrund ihrer spezifischen Ausbildung für die berührungslose, hochpräzise Messung auch von kleinsten Messfeldern geeignet und erfordert für die Abstandsregelung keine separaten Messfühler.
Abstract:
An apparatus and method for the remote analysis and identification of unknown compounds. A robotic arm positions a sensor on a surface. The sensor unit has a monitoring mechanism to monitor separation between the sensor unit and the surface when placed in contact with the surface to maintain the separation substantially constant. An illumination source illuminates the region of interest to produce scattered photons from an unknown compound. The scattered photons are collected by an optical system and delivered to a spectroscopic detector for analysis and identification. An algorithm is applied to the data generated by the spectroscopic detector to identify the unknown compound.
Abstract:
A method for monitoring a process output with a highly abridged spectrophotometer. The method includes securing spectral data for each spectral primary used in a process, measuring spectral data with a highly abridged spectrophotometer for a sample produced by the process, determining an estimated weight for each spectral primary in the sample, and computing spectral data representative of the sample based on the secured spectral data and the determined estimated weight for each spectral primary in the sample.
Abstract:
There is described a system and method for the in vivo determination of lactate levels in blood using Near-Infrared Spectroscopy (NIRS)and/or Near-infrared Raman Spectroscopy (NIR-RAMAN). The method teaches measuring lactate in vivo comprising: optically coupling a body part (14) with a light source (10) and a light detector (18) the body part having tissues comprising blood vessels; injecting near-infrared (NIR) light at one or a plurality of wavelengths in the body part; detecting, as a function of blood volume variations in the body part, light exiting the body part at at least the plurality of wavelengths to generate an optical signal (20); and processing the optical signal as a function of the blood volume variations to obtain a lactate level in blood.
Abstract:
A method and device for high speed spectroscopic constituent verification. The method includes the steps of illuminating the sample with broadband light and measuring two preselected wavelenghts of reflected light: a first narrow-range of wavelenghts lambda 1 that is not significantly absorbed by the constituent of interest, and a second narrow-range of wavelengths lambda 2 that is substantially absorbed by the constituent of interest. Given the two measurements of reflection, upper and lower thresholds are determined, the latter based on a percentage of the measured baseline reflected light of wavelengths lambda 1. Finally, the presence of the constituent of interest is indicated if the measure of reflected discriminant wavelength lambda 2 is within the upper and lower threshold measures of reflected baseline light lambda 1. The compact device that implements the above described method includes a base unit (10) housing a near-IR discriminator circuit with a pair of selective light sensors and a light source. A sensor unit connects to the base unit (10). The sensor unit includes a flexible neck (20) with a connecting block (24) attached at one end for mating with the base unit (10), and a hood assembly (30) attached at the other end for enclosing a light collecting and transmitting lens (32). The optics are connected by an optical fiber bundle inside the flexible neck.
Abstract:
Die Erfindung betrifft ein Spektralphotometer, enthaltend eine schaltbare Lichtquelle (10) zur Bereitstellung eines Messstrahls, eine Optik, die den Messstrahl durch eine Messzelle auf einen Lichtdetektor (16) leitet und eine Auswerteeinheit (20), die eingangsseitig mit dem Lichtdetektor und der Lichtquelle verbunden ist. Das Spektralphotometer zeichnet sich dadurch aus, dass (i) die Auswerteeinheit über ein Speichermittel (22) verfügt, in der ein Wert für eine Lichtintensität (I 0 ) der Lichtquelle hinterlegt ist, der durch Differenzmessung einer Intensität (I 0,ein ) bei eingeschalteter Lichtquelle und einer Intensität (I 0,aus ) bei ausgeschalteter Lichtquelle bei jeweils nicht geschlossener Messzelle ermittelt wurde, (ii) die Auswerteeinheit ausgelegt ist, bei einer im Messstrahl angeordneten Probe einen Wert für eine Lichtintensität (I) zu ermitteln, der durch Differenzmessung einer Intensität (I ein ) bei eingeschalteter Lichtquelle und einer Intensität (I aus ) bei ausgeschalteter Lichtquelle bei jeweils nicht geschlossener Messzelle ermittelt wurde, und (iii) die Auswerteeinheit ausgelegt ist, durch Differenzbildung aus den Intensitäten (I 0 ) und (I) einen Wert für die durch Absorption des Messstrahls in der Probe geminderte Intensität (I abs ) zu ermitteln.
Abstract:
A spectral analysis module for a high repetition rate gas discharge laser having a pulsed output beam with energy greater than or equal to 15 mJ per pulse, sub-nanometer bandwidth tuning range pulses having femptometer bandwidth precision and tens of femptometers bandwidth accuracy range, for measuring bandwidth on a pulse to pulse basis at repetition rates of 4000 Hz and above, comprising a beam-splitter in said laser's output path, said beam-splitter oriented at an angle to reduce incident fluence and creating overlapping fresnel reflections in the first portion of the laser output beam; a secondary beam-splitter tolerating the fluence created by said reflections in said first portion, the secondary beam-splitter reflecting most of said first portion and passing a second portion of the output beam; a telescoping optic (204, 220) that demagnifies said second portion onto a first diffuser (22), the demagnification selected to keep the fluence in the overlapping fresnel reflections in said second portion below the damage threshold of said first diffuser.
Abstract:
Es wird eine Vorrichtung (10) zur bildgebenden, spektroskopischen Erfassung von von Gegenständen (11) charakterisierenden Parametern, insbesondere von Vorgängen, Abläufen und Gegenständen (11) und deren Analyse, vorgeschlagen, umfassend wenigstens eine optische Erfassungseinheit (13), wenigstens eine spektrographische Einheit (12), wenigstens ein optisch sensitives Detektorelement (14) sowie eine elektronische Steuer- und Regeleinrichtung (15), mit der die Erfassungseinheit (13), die spektrographische Einheit (12) sowie das Detektorelement (14) in bezug auf die spektrographische Erfassungsfunktion der Vorrichtung (10) zu deren Steuerung und/oder Regelung verknüpft sind. Die elektronische Steuer- und Regeleinheit (15) umfaßt eine Programmeinheit (16) in die ein anwenderspezifischer Steuer- und/oder Regelalgorithmus einschreibbar ist.