Abstract:
A method for producing a standard Raman spectrum of a sample (26). A source (12) or incident radiation (14). The incident beam (22) and a monitor beam (24) from the incident radiation (14). The incident beam (22) is directed to the sample (26) and a Raman beam (32) is generated from the sample (26). Spectral data may be collected directly from the monitor beam (24) and the Raman beam simultaneously. The occurrence of a frequency shift in the incident radiation (14) is determined. One spectral measurement is made after the incident radiation (14) is determined. One spectral measurement is made after the occurrence of the frequency shift, or a first spectral measurement is made before and a second spectral measurement is made after the frequency shift. One or more arithmetic calculations are applied to the single spectral measurement, or the second spectral measurement is subtracted from the first spectral measurement. One or more integral transforms are applied to the resulting spectral measurement data to produce the standard Raman spectrum.
Abstract:
A spectroscopic device (10) comprising an optical fiber bundle (12) having its output end (12a) arranged in a vertical direction, a slit (16) provided so as to face the output end (12a) of the optical fiber bundle (12), a spectroscopic element arranging means (20) capable of arranging, on the optical path of light output from the output end (12a) of the bundle (12) and passed through the slit (16), a first diffraction grating (23) provided with a groove extending along a vertical direction at a specified line dispersion horizontally and a second diffraction grating (24) provided with a groove extending along a vertical direction at a line dispersion larger than that for the first diffraction grating (23) horizontally so as to enable switching between the diffraction gratings, and a photomultiplier (30) comprising a plurality of horizontally-arranged rows of anodes (53) extending along a vertical direction.
Abstract:
The invention relates to a spectrometer, a spectrometric method and detector, and a new use of an interferometer. The spectrometer comprises a Fabry-Perot interferometer (120), to which light can be guided from the object (100) being investigated, in order to produce an interference image, and a detector (130) at which the interference image is aimed. The transmittance of the interferometer (120) is spectrally sliced to at least two separate wavelength bands. For its parts, the detector (130) is arranged to detect the interference image from at least two separate wavelength bands spatially. The detector is arranged to detect the said wavelength bands simultaneously, by exploiting the response of the image elements of the detector, calibrated as a function of the mirror gap of the interferometer, in order to detect simultaneously at least two different orders of the interference. With the aid of the invention, it is possible to implement spectrometric measurements more quickly, or to obtain more information on the object at one time.
Abstract:
An optical wavelength analyser including: an entrance slit (4) for receiving a light beam (3) including signals with various wavelengths and passing the beam at least partly; a diffractor (6, 7, 9) for receiving the passed beam and diffracting the signals dependent on their wavelength; a detector (8) including adjacent detector elements (32, 33, 35, 36, 38, 39) for receiving the diffracted signals and generating their output signals; a processor (21) for determining the wavelengths from the output signals, in which the received light beam has a spatially uniform intensity; the diffractor diffracts each signal on a different detector element subset, consisting of at least a first element (32, 33, 35, 36, 38, 39) for receiving at least a first signal with a first signal level; the processor determines each signal's wavelength dependent on the first signal level and a calibration value.
Abstract:
A method and apparatus is disclosed which may comprise detecting the bandwidth of laser output light pulses of a pulsed laser utilizing an array of light detecting elements by the steps which may comprise passing a portion of the laser output light produced by the pulsed laser to the array of light detecting elements in a manner that shifts the portion of the laser beam across the array of light detecting elements to avoid aliasing artifacts in output of the light detecting array. The portion of the image formed by the laser output light may be under-sampled, e.g., in the spatial or time domains. The relevant feature size of an image of an output of a fringe pattern generating element being sampled may comprise a size that is small with respect to the size of individual light detecting elements in the array of light detecting elements.
Abstract:
Systems and methods for fast and sensitive standoff surface-hazard detection with high data throughput, high spatial resolution and high degree of pointing flexibility. The system comprises a first hand-held unit that directs an excitation beam onto a surface that is located a distance away from the first unit and an optical subsystem that captures scattered radiation from the surface as a result of the beam of light. The first unit is connected via a link that includes a bundle of optical fibers, to a second unit, called the processing unit. The processing unit comprises a fiber-coupled spectrograph to convert scattered radiation to spectral data, and a processor that analyzes the collected spectral data to detect and/or identify a hazardous substance. The second unit may be contained within a body-wearable housing or apparatus so that the first unit and second unit together form a man-portable detection assembly. In one embodiment, the system can continuously and without interruptions scan a surface from a 1-meter standoff while generating Raman spectral-frames at rates of 25 Hz.
Abstract:
In an apparatus for imaging of objects by applying optical frequency domain tomography with an adjusting system that is provided with at least one device (170) for spectral analysis of a light beam with a dispersion device (171), a set of optical elements (172), a detection device (173) of the spectrum, the adjusting system for setting a relative position of photosensitive elements (174) of the detection device (173) and a spectrum image has at least one actuator acting on the dispersion device (171) and/or the set of optical elements (172) and/or the detection device (173) or a displaceable element of the dispersion device (171) and/or the set of optical elements (172) and/or the detection device (173) and movement of which causes the relative displacement between each other of at least one photosensitive element of the detection device of the spectrum and the spectrum image of the resultant light beam (270) until sufficient parameters of registration of the spectrum are achieved.
Abstract:
A Fourier-domain optical coherence tomography (OCT) imager is presented. An OCT imager according to the present invention can have an auto-alignment process. The auto-alignment process automatically adjusts at least one optical component of a spectrometer of the imager so that the spectrometer is aligned during an imaging session. In addition to the auto-alignment process, OCT spectra are normalized for background spectra and for noise characteristics in order to provide a more accurate and clear OCT image.