摘要:
Monolithic FETs including a majority carrier channel in a first high carrier mobility semiconductor material disposed over a substrate. While a mask, such as a gate stack or sacrificial gate stack, is covering a lateral channel region, a spacer of a high carrier mobility semiconductor material is overgrown, for example wrapping around a dielectric lateral spacer, to increase effective spacing between the transistor source and drain without a concomitant increase in transistor footprint. Source/drain regions couple electrically to the lateral channel region through the high-mobility semiconductor spacer, which may be substantially undoped (i.e. intrinsic). With effective channel length for a given lateral gate dimension increased, the transistor footprint for a given off-state leakage may be reduced or off-state source/drain leakage for a given transistor footprint may be reduced, for example.
摘要:
Crystalline heterostructures including an elevated fin structure extending from a sub-fin structure over a substrate. Devices, such as III-V transistors, may be formed on the raised fin structures while silicon-based devices (e.g., transistors) may be formed in other regions of the silicon substrate. A sub-fin isolation material localized to a transistor channel region of the fin structure may reduce source-to-drain leakage through the sub-fin, improving electrical isolation between source and drain ends of the fin structure. Subsequent to heteroepitaxially forming the fin structure, a portion of the sub-fin may be laterally etched to undercut the fin. The undercut is backfilled with sub-fin isolation material. A gate stack is formed over the fin. Formation of the sub-fin isolation material may be integrated into a self-aligned gate stack replacement process.
摘要:
A non-planar gate all-around device and method of fabrication thereby are described. In one embodiment, a multi-layer stack is formed by selectively depositing the entire epi-stack in an STI trench. The channel layer is grown pseudomorphically over a buffer layer. A cap layer is grown on top of the channel layer. In an embodiment, the height of the STI layer remains higher than the channel layer until the formation of the gate. A gate dielectric layer is formed on and all-around each channel nanowire. A gate electrode is formed on the gate dielectric layer and surrounding the channel nanowire.
摘要:
An embodiment includes a device comprising: first and second fins adjacent one another and each including channel and subfin layers, the channel layers having bottom surfaces directly contacting upper surfaces of the subfin layers; wherein (a) the bottom surfaces are generally coplanar with one another and are generally flat; (b) the upper surfaces are generally coplanar with one another and are generally flat; and (c) the channel layers include an upper material and the subfin layers include a lower III-V material different from the upper III-V material. Other embodiments are described herein.
摘要:
Systems and methods of optimizing a gate profile for performance and gate fill are disclosed. A semiconductor device having an optimized gate profile includes a semiconductor substrate and a fin extending above the semiconductor substrate. A pair of source and drain regions are disposed on opposite sides of a channel region. A gate stack is disposed over the channel region, where the gate stack includes a top portion separated from a bottom portion by a tapered portion. The top portion and at least a portion of the tapered portion are disposed above the fm.
摘要:
Transistor devices having indium gallium arsenide active channels, and processes for the fabrication of the same, that enables improved carrier mobility when fabricating fin shaped active channels, such as those used in tri-gate or gate all around (GAA) devices. In one embodiment, an indium gallium arsenide material may be deposited in narrow trenches which may result in a fin that has indium rich surfaces and a gallium rich central portion. These indium rich surfaces will abut a gate oxide of a transistor and may result in high electron mobility and an improved switching speed relative to conventional homogeneous composition indium gallium arsenide active channels.
摘要:
Embodiments of the invention include a semiconductor structure and a method of making such a structure. In one embodiment, the semiconductor structure comprises a first fin and a second fin formed over a substrate. The first fin may comprise a first semiconductor material and the second fin may comprise a second semiconductor material. In an embodiment, a first cage structure is formed adjacent to the first fin, and a second cage structure is formed adjacent to the second fin. Additionally, embodiments may include a first gate electrode formed over the first fin, where the first cage structure directly contacts the first gate electrode, and a second gate electrode formed over the second fin, where the second cage structure directly contacts the second gate electrode.
摘要:
Semiconductor devices including a subfin including a first III-V semiconductor alloy and a channel including a second III-V semiconductor alloy are described. In some embodiments the semiconductor devices include a substrate including a trench defined by at least two trench sidewalls, wherein the first III-V semiconductor alloy is deposited on the substrate within the trench and the second III-V semiconductor alloy is epitaxially grown on the first III-V semiconductor alloy. In some embodiments, a conduction band offset between the first III-V semiconductor alloy and the second III-V semiconductor alloy is greater than or equal to about 0.3 electron volts. Methods of making such semiconductor devices and computing devices including such semiconductor devices are also described.