Abstract:
A sensing apparatus consisting of more than one diode laser having select lasing frequencies, a multiplexer optically coupled to the outputs of the diode lasers with the multiplexer being further optically coupled to a pitch side optical fiber. Multiplexed laser light is transmitted through the pitch side optical fiber to a pitch optic operatively associated with a process chamber which may be a combustion chamber or the boiler of a coal or gas fired power plant. The pitch optic is oriented to project multiplexed laser output through the process chamber. Also operatively oriented with the process chamber is a catch optic in optical communication with the pitch optic to receive the multiplexed laser output projected through the process chamber. The catch optic is optically coupled to an optical fiber which transmits the multiplexed laser output to a demultiplexer. The demultiplexer demultiplexes the laser light and optically couples the select lasing frequencies of light to a detector with the detector being sensitive to one of the select lasing frequencies.
Abstract:
An optical slicer for generating an output spot comprising an image compressor which receives a substantially collimated input beam and compresses the beam, wherein the input beam, if passed through a focusing lens, produces an input spot; an image reformatter which receives the compressed beam to reformat the beam into a plurality of sliced portions of the compressed beam and vertically stacks the portions substantially parallel to each other; and an image expander which expands the reformatted beam to produce a collimated output beam which, if passed through the focusing lens, produces the output spot that is expanded in a first dimension and compressed in a second dimension relative to the input spot.
Abstract:
A spectroscopic method and spectroscopy system therefrom for analyzing samples. A sample includes a first chemical component that has a characteristic first absorption peak is provided. The sample is irradiated in a measurement waveband proximate to the first absorption peak, and at a first and a second reference waveband where the first chemical component lacks characteristic absorption features. Reflected or transmitted detection data is obtained including a measured power proximate to the first absorption peak and first and second reference powers at the reference wavebands. A plurality of different waveband ratios are evaluated using pairs of detection data to generate a plurality of measured waveband ratio values. A parameter of the first chemical component is then determined by evaluating a multidimensional polynomial calibration equation that relates the parameter of the first chemical component to the plurality of different waveband ratios by substituting the measured waveband ratio values into the calibration relation.
Abstract:
Methods for measuring emissions of gaseous substances to the atmosphere using scattered sunlight spectroscopy and an optical measuring device are disclosed in which the device includes a telescopic member defining a field-of-view of the optical measuring device and a scanner for controlling variation of the direction of the field of view to scan a predetermined layer of the atmosphere, the method comprising scanning the field-of-view to scan the predetermined layer of the atmosphere in the form of at least a part of a cone having its apex positioned at the optical measuring device and having a cone angle &bgr;. Optical measuring devices themselves are disclosed.
Abstract:
The present invention concerns a method and camera for obtaining a high-contrast image of a predetermined target present in an area under observation. The method involves obtaining an in-band image of the observation area including the target using a filter whose bands are aligned with selected characteristic wavelength bands of the target and an out-of-band image of the observation area excluding the target using the filter with its bands non-aligned with the selected characteristic wavelength bands of the target. Processing of the in-band and out-of-band images results in a high-contrast image highlighting the presence of the target in the observation area and thereby allowing its detection and monitoring.
Abstract:
A color sensor array includes a plurality of sensors. Each of the plurality of sensors has a width dimension and a length dimension that is elongated with respect to the width dimension. The length dimensions of the sensors are substantially equal to one another and parallel to an illumination plane. Each of the plurality of sensors includes a face defined by opposing first and second elongated sides and opposing first and second non-elongated sides. The first non-elongated sides of the plurality of sensors are aligned with one another along an axis that is substantially perpendicular to the illumination plane.
Abstract:
There is provided a laser event recorder (100) comprising an image sensor, a processing unit coupled to the image sensor, and a wireless transceiver coupled to the processing unit. The processing unit is configured to identify when the image sensor is illuminated by a laser (16); in response to the identification, record a laser event comprising at least one characteristic feature of the laser (16); and send the recorded laser event to a central server (300) using the wireless transceiver. There is further provided an application software for configuring a smartphone as the laser event recorder, and a laser event recording system comprising the laser event recorder and the central server.
Abstract:
The invention is characterized by changes in the blade as used in a micro-metric measuring device. The measuring device according to the invention comprises a measuring knife comprising a resilient tool, further comprising a plate-shaped tool which is placed centrally in the measuring knife and which is placed perpendicularly to the orientation of the measuring knife. Measurement is performed manually and independent of any operator-related influences by way of centering unit. The Exmore CRIMPING MEASURING DEVICE simplifies the crimp height measurement process resulting in faster measurement time and improved consistency, acquired measured values can be read off, transferred via the serial interface or optionally printed.
Abstract:
A food product analysis device (1) includes a memory portion that stores food product database containing a plurality of items of food product information including characteristic information including at least one of first light absorption information which is information relating to absorption of near infrared light and ingredient information which is information relating to an ingredient of a food product, and type information which is information relating to a type of the food product. In addition, the food product analysis device includes an analysis portion that matches measured information, which is the characteristic information obtained on the basis of a result of measurement using the near infrared light, with the food product database.