Abstract:
Disclosed is a composite catalyst, comprising carbon in a continuous phase and Raney alloy particles in a dispersed phase. The Raney alloy particles are dispersed evenly or unevenly in the carbon in a continuous phase, and the carbon in a continuous phase is obtained by carbonizing at least one carbonizable organic substance. The catalyst has good particle strength, high catalytic activity, and good selectivity.
Abstract:
According to one or more embodiments described herein, a process for producing propylene, the process comprising at least partially metathesizing a first portion of a first stream to form a first metathesis-reaction product, at least partially cracking the first metathesis-reaction product to form a cracking-reaction product, the cracking reaction product comprising propylene and ethylene, at least partially separating ethylene from at least the cracking reaction product to form a first recycle stream, combining the first recycle stream with a second portion of the first stream to a form a mixed stream, and at least partially metathesizing the mixed stream to from a second metathesis-reaction product. In embodiments, the second metathesis-reaction product may comprise propylene, the first stream may comprise butene, and the first recycle stream may comprise ethylene.
Abstract:
A process for producing hydrocarbons and, optionally, oxygenates of hydrocarbons is provided. A synthesis gas comprises hydrogen, carbon monoxide and N-containing contaminants selected from the group consisting of HCN, NH 3 , NO, R x NH 3-X , R 1 -CN and heterocyclic compounds containing at least one nitrogen atom as a ring member of a heterocyclic ring of the heterocyclic compound. The N-containing contaminants constitute, in total, at least 100vppb but less than 1 000 000vppb of the synthesis gas. The synthesis gas is contacted at an elevated temperature and an elevated pressure, with a particulate supported Fischer-Tropsch synthesis catalyst. The catalyst comprises a catalyst support, Co in catalytically active form supported on the catalyst support, and a dopant selected from the group consisting of platinum (Pt), palladium (Pd), ruthenium (Ru) and/or rhenium (Re). The dopant level is expressed by a formula. Hydrocarbons and, optionally, oxygenates of hydrocarbons are obtained.
Abstract:
Described herein are solid acid catalysts and the methods for catalytically preparing α,β-unsaturated carboxylic acids and/or esters thereof. In one aspect, a zeolite catalyst may be used. The catalyst may, in certain embodiments, be modified to improve the selectivity and/or conversion of a reaction. For instance, a catalyst may be modified by ion exchange to achieve a desirable acidity profile in order to achieve high level of conversion of reactants and selectivity for desirable products of the catalytic reaction. In another aspect, a variety of feed stocks (e.g., starting compositions) may be used including an α-hydroxycarboxylic acid, an α-hydroxycarboxylic acid ester, a β-hydroxycarboxylic acid, a β-hydroxycarboxylic acid ester, cyclic esters thereof (e.g., lactide), and combinations thereof.
Abstract:
In general the present invention concerns a method for conversion of particular 4-alkyl-2- hydroxyphenols and 4-alkyl-2-alkoxyphenols into 3-alkylphenols. More specifically, this invention relates to a novel process of selectively forming meta-alkyl phenols of various alkylphenols, such as for instance converting the fraction of 4-alkyl-2-hydroxyphenols and 4- alkyl-2-alkoxyphenols into high yields of 3-alkylphenols.
Abstract:
A process for the purification of CO2 from chlorinated hydrocarbons and non-chlorinated hydrocarbons, comprising: contacting a CO2 stream with a chromium oxide catalyst, wherein the stream comprises the CO2, and impurities, wherein the impurities comprise the non-chlorinated hydrocarbons and the chlorinated hydrocarbons; forming a purified CO2 stream by interacting the impurities with the chromium oxide catalyst to form additional CO2 and chromium chloride; and regenerating the chromium oxide catalyst by contacting the chromium chloride with an oxygen containing gas stream.
Abstract:
Disclosed are a catalyst suitable for production of aviation kerosene from biomass Fischer-Tropsch synthesis oil and a preparation method therefor. Various components by weight in percentage in the catalyst are: 20-50% of an amorphous aluminum-silicon, 5-20% of an aluminum oxide binder, 20-60% of a hydrothermally modified ZSM-22 molecular sieve, 0.5-5% of nickel oxide, and 5-15% of molybdenum oxide. The preparation method is as follows: firstly performing an NH4 + exchange treatment on the K-ZSM-22 molecular sieve to obtain an H-ZSM-22 molecular sieve, then performing a hydrothermal treatment to obtain a modified H-ZSM-22 molecular sieve, and then after uniform mixing with the amorphous aluminum-silicon, adding the aluminum oxide binder and a sesbania powder, mixing and kneading same, grinding into clusters, forming same by band extrusion, then drying and calcinating same, and finally loading active metals Ni and Mo. The catalyst obtained from the present invention has a high activity and a high selectivity, increases the isomerization degree of long-chain alkanes, reduces the freezing points of the fractions of aviation kerosene, and improves the yield of the aviation kerosene.
Abstract:
Provided is a novel composite of an iron compound and a graphene oxide which is extremely useful as a photocatalyst or an active ingredient of an electrode. In this composite of an iron compound and graphene oxide, iron compound particles are supported on the graphene oxide.
Abstract:
The present invention relates to a catalyst system comprising a transition metal compound on a solid carrier which is a "surface-reacted calcium carbonate" comprising calcium carbonate and a water-insoluble calcium salt other than calcium carbonate, such as hydroxylapatite. The invention further relates to a method for manufacturing said catalyst system and to its use in heterogeneous catalysis, especially in C-C cross couplings and glycerol hydrogenolysis.