Abstract:
A joining element has an anchoring portion for in-depth anchoring in the object and a head portion arranged proximally of the anchoring portion with respect to an insertion axis. The head portion has a lateral outer surface that has a structure that is well-defined, especially within tight tolerances. The joining element is positioned relative to an object of a non-liquefiable material such that the anchoring portion reaches into an opening of the object or is placed adjacent a mouth thereof. Then, the joining element is pressed towards a distal direction, to press the anchoring portion into the opening, while mechanical vibration energy is coupled into the joining element by a tool, in an amount and for a time sufficient for liquefaction of a portion of the thermoplastic material to cause interpenetration of the thermoplastic material into structures of the object.
Abstract:
A joining element has an anchoring portion for in-depth anchoring in the object and a head portion arranged proximally of the anchoring portion with respect to an insertion axis. The head portion has a lateral outer surface that has a structure that is well-defined, especially within tight tolerances. The joining element is positioned relative to an object of a non-liquefiable material such that the anchoring portion reaches into an opening of the object or is placed adjacent a mouth thereof. Then, the joining element is pressed towards a distal direction, to press the anchoring portion into the opening, while mechanical vibration energy is coupled into the joining element by a tool, in an amount and for a time sufficient for liquefaction of a portion of the thermoplastic material to cause interpenetration of the thermoplastic material into structures of the object.
Abstract:
The invention relates to a method for increasing the adhesion between the first surface of a first web-shaped material and a first surface of a second web-shaped material, the first web-shaped material and the second web-shaped material being fed continuously and with the same web direction to a laminating gap, in which the first web-shaped material and the second web-shaped material are laminated together by means of the first surfaces thereof, the two first surfaces of the first web-shaped material and of the second web-shaped material being treated with a single plasma simultaneously and preferably over the entire area, and namely preferably in such a way that the plasma is applied continuously to the two first surfaces, starting from before the laminating gap to the laminating gap, the laminating gap being formed by a pressing element and a counter-pressure device, which builds up a counter pressure, and preferably at least one of the lateral surfaces of the pressing element and of the counter-pressure device or both being equipped with a dielectric, characterized in that none of the two first surfaces/web-shaped materials are guided through the discharge zone of the plasma-generating device.
Abstract:
A bonding structure manufacturing method for manufacturing a bonding structure in which a first member and a second member are bonded is provided with: a step for forming a perforation with an opening in the surface of the first member and forming a protrusion that protrudes into the inner circumferential surface of the perforation; a step for disposing the region of the first member where the perforation is formed adjacent to the second member; and step for filling and curing the second member in the perforation of the first member by irradiating a laser on the region of the first member where the perforation is formed from the second member side.
Abstract:
A glove (1) with a sleeve (2) is provided in which the bonding strength between the glove main body and the sleeve is great, allowing easy wearing and removal as well as easy overlapping of the glove main body and the sleeve upon bonding. The glove with a sleeve includes: a glove main body comprising rubber or a resin as a principal component; and a cylindrical sleeve comprising a thermoplastic resin (3) as a principal component that is arranged to protrude from a cuff portion of the glove main body, in which the cuff portion of the glove main body is bonded to one end portion of the sleeve through a moisture-curing urethane-based hot melt adhesive. The moisture-curing urethane-based hot melt adhesive is preferably crosslinked. A post-curing thermal deformation temperature of the moisture-curing urethane-based hot melt adhesive is preferably no less than 80 °C.
Abstract:
There is provided a joined body in which two or more members Yi including a fitting hole are fastened, in which a fastening rod including reinforcing fibers and a thermoplastic resin is positioned in the fitting hole, the fastening rod is caulked by heat, and the members Yi are caulking-fastened.