Abstract:
Provided are thermally insulating materials comprising 1 to 95 wt% ceramic oxide, 1 to 30 wt% inorganic binding agent, and treated at a temperature of less than about 1000°C; processes for producing the insulating materials; and uses thereof.
Abstract:
Provided are a ceramic member being a sintered body including at least forsterite and boron nitride as major components, and in which the boron nitride is oriented in one direction, a probe holder formed by using the ceramic member, and a method for manufacturing the ceramic member. In the ceramic member, the index of orientation preference is equal to or lower than 0.07, and the coefficient of thermal expansion at 20 to 300°C in a direction parallel to the direction of orientation is (3 to 5)×10 -6 /°C, or the three-point bending strength based on JIS R 1601 is equal to or higher than 250 MPa.
Abstract:
The embodiments of the present invention disclose a method for synthesizing ceramic composite powder and ceramic composite powder, pertaining to the technical field of inorganic non-metallic materials. Among them, the method includes preparing an aqueous slurry of ceramic raw materials, the aqueous slurry including ceramic raw material, water and low polymerization degree organometallic copolymer, the ceramic raw material including at least two components; adding a crosslinking coagulant into the aqueous slurry to obtain a gel; dehydrating and drying the gel to obtain the dried gel; heating the dried gel to the synthesizing temperature of the ceramic composite powder and conducting the heat preservation to obtain ceramic composite powder or ceramic composite base powder; conducting secondary doping on ceramic composite base powder to obtain the ceramic composite powder. The multi-component ceramic composite powder prepared by the embodiments of the present invention has uniformly dispersed each component and low synthesizing temperature.
Abstract:
The present invention is intended to drastically improve a precision polishing characteristic of a cordierite-based sintered body which has low thermal expansibility, high dimensional long-term stability and high rigidity (high elastic modulus). The cordierite-based sintered body comprises cordierite as primary components, and one or more selected from the group consisting of La, Ce, Sm, Gd, Dy, Er, Yb and Y in an oxide-equivalent amount of 1 to 8 mass%, without any crystal phase other than a cordierite crystal phase. A mass ratio of primary components of the cordierite satisfies the following relations: 3.85 ‰¤ SiO 2 / MgO ‰¤ 4.60, and 2.50 ‰¤ Al 2 O 3 / MgO ‰¤ 2.70, and the cordierite-based sintered body after being subjected to precision polishing has a precisely polished surface with an average surface roughness (Ra) of 1 nm or less.
Abstract:
A refractory article can include a body including a content of alumina of at least 60 wt %, a content of silica of not greater than 20 wt %, a content of zirconia of not greater than 20 wt % for a total weight of the body. In a particular embodiment, the body includes a third phase including composite grains including mullite and zirconia. The third phase including the composite grains can be present within a range including at least 1 wt % and not greater than 35 wt % for a total weight of the body.
Abstract:
Provided are thermally insulating materials comprising 1 to 95 wt % ceramic oxide, 1 to 30 wt % inorganic binding agent, and treated at a temperature of less than about 1000° C.; processes for producing the insulating materials; and uses thereof.
Abstract:
A ceramic honeycomb structure having a large number of flow paths partitioned by porous cell walls, the cell walls meeting the conditions; (a) the cell walls having porosity of 55-80%, (b) the cell walls having a median pore diameter D50 (measured by mercury porosimetry) of 5-27 µm, (c) pores open on cell wall surfaces having an opening area ratio of 20% or more, (d) pores open on cell wall surfaces having a median opening diameter d50 (determined from equivalent circle diameters on an area basis) of 10-45 µm, (e) the density of pores open on cell wall surfaces having equivalent circle diameters of 10 µm or more and less than 40 µm being 350/mm 2 or more, (f) the maximum inclination of a curve of a cumulative pore volume relative to a pore diameter (determined from a pore distribution measured by mercury porosimetry) being 1.6 or more, and (g) a ratio D50/d50 of the median pore diameter D50 to the median opening diameter d50 being 0.65 or less.