Abstract:
The spectroscopy module 1 is provided with a body portion 2 for transmitting light L1, L2, a spectroscopic portion 3 for dispersing light L1 made incident from the front plane 2a of the body portion 2 into the body portion 2 to reflect the light on the front plane 2a, a light detecting element 4 having a light detecting portion 41 for detecting the light L2 dispersed and reflected by the spectroscopic portion 3 and electrically connected to a wiring 9 formed on the front plane 2a of the body portion 2 by face-down bonding, and an underfill material 12 filled in the body portion 2 side of the light detecting element 4 to transmit the light L1, L2. The light detecting element 4 is provided with a light-passing hole 42 through which the light L1 advancing into the spectroscopic portion 3 passes, and a reservoir portion 43 is formed on a rear plane 4a of the body portion 2 side in the light detecting element 4 so as to enclose a light outgoing opening 42b of the light-passing hole 42.
Abstract:
A spectroanalytical system for receiving radiation to be analyzed along a first path includes a grating in the first path with periodic faceted grooves for spatially separating the radiation as a function of wavelength. The blaze angles of the faceted grooves are progressively graded. A multielement detector detects radiation spatially separated by the grating. An optical conditioner is disposed in the first path between the grating and a multielement detector.
Abstract:
Low cost and form factor spectrometers are disclosed. A spectrometer comprises a substrate, a plurality of optical sensors (979), a plurality of spectral filters (977), an optical manifold (976) and one or more processing elements (980). The plurality of spectral filters (977) and the one or more processing elements (980) are mounted on the substrate. The spectral filters (977) are fixedly positioned over at least a group of the optical sensors (979) and fixedly positioned with respect to the substrate. An optical manifold (976) is fixedly positioned over the spectral filters (977). The optical manifold (976) has a plurality of exit ports and an entrance port, wherein light entering the entrance port is transmitted to an interior portion of the optical manifold (976) and a portion of the light is transmitted from the exit ports through some of the spectral filters (977). The spectrometers are disclosed embedded in printing and scanning devices, computer companion devices, scope-type devices and the like.
Abstract:
The present invention is an alternative Fourier domain optical coherence tomography system (FD-OCT) and its associated method. The system comprises a swept multi -wave length laser, an optical interferometer and a multi-channel receiver. By employing a multi-wavelength laser, the sweeping range for each lasing wavelength is substantially reduced as compared to a pure swept single wavelength laser that needs to cover the same overall spectral range. The overall spectral interferogram is divided over the individual channels of the multi-channel receiver and can be re-constructed through processing of the data from each channel detector. In addition to a substantial increase in the speed of each axial scan, the cost of invented FD- OCT system can also be substantially less than that of a pure swept source OCT or a pure spectral domain OCT system.
Abstract:
A multi-spectral sensor system and methods are disclosed. One aspect of the invention comprises a multi-spectral sensor system mountable to a mobile platform. The system may comprise an image capturing system, a first translation stage affixed to the image capturing system and a stationary optics assembly, The system may further comprise a motion controller configured to move the first translation stage and image capturing system across the stationary optics along a traveling direction opposite of a traveling direction of the mobile platform and at substantially the same rate as the mobile platform is moving during a stare operation.
Abstract:
Die Erfindung betrifft eine spektralanalytische Einheit mit einem Beugungsgitter, bei der ein paralleles Lichtbündel (10), welches einen Wellenlängenbereich aufweist, auf ein Beugungsgitter (1) einfällt, welches die unterschiedlichen Wellenlängen durch Beugung in erste Richtungen spektral aufspaltet, wobei diese Lichtbündel als Lichtbündel 1.-Beugungsordnung ohne Umlauf (11) bezeichnet werden, und das Beugungsgitter (1) Lichtbündel in eine zweite Richtung lenkt, wobei dieses Lichtbündel als Lichtbündel 0.-Beugungsordnung ohne Umlauf (12) bezeichnet wird, weiterhin Wellenlängenteilbereiche des spektral aufgespalteten Lichtbündels 1.-Beugungsordnung ohne Umlauf (11) durch eine Optik (2) auf eine Detektorzeile (3) fokussierbar sind und eine Auswerteelektronik (9) an die Detektorzeile (8) angeschlossen ist, welche das erzeugte Spektrum als Information gewinnt und darstellt. Die Erfindung ist dadurch gekennzeichnet, daß das Lichtbündel 0.-Beugungsordnung ohne Umlauf (12) auf eine Umlenkeinrichtung (Umlenkspiegel 4, 5, 6) trifft, die so ausgerichtet und positioniert ist, daß dieses Lichtbündel auf das Beugungsgitter (1) einfällt und ein Lichtbündel 1.-Beugungsordnung aus einem ersten Umlauf (13) und ein Lichtbündel 0.-Beugungsordnung aus den ersten Umlauf (14) erzeugbar sind, wobei das Lichtbündel 1.-Beugungsordnung ohne Umlauf (11) und das Lichtbündel 1.-Beugungsordnung aus dem ersten Umlauf (13) jeweils eines Wellenlängenteilbereiches durch die Optik (2) auf jeweils ein Einzelelement (7) der Detektorzeile (8) abbildbar sind.
Abstract:
Photons emanating from a channel (14) in a fluidic structure (12) or from moving objects (16) are sensed using a photosensor array in an integrated circuit (66-70). The array includes subrange cells that photosense within respective subranges of a photon energy range. For example, the subrange cells can receive photons in their respective subranges from a transmission structure that has laterally varying properties, The photons can be emitted in response to excitafiion or can be scattered in response to illumination.
Abstract:
A miniaturized spectrometer is adapted for placement within a body near tissue to be characterized. The spectrometer includes a light source (3) and a plurality of light detectors (61). The light source generates light to illuminate the tissue. The detectors detect optical signals from the illuminated tissue and convert these optical signals to electrical signals. The miniaturized spectrometer can be disposed at the distal end of an interventional device (4). Optical conduits, such as fiber optic cables or strands, extending the length of the interventional device are not required when the miniature spectrometer is employed.
Abstract:
The present invention concerns an LED spectrometer operating without moving parts, according to the sweep principle, and appropriate to serve as a structural component in many kinds of spectroscopic concentration analysers. The design of the invention affords the advantage that, even at its minimum, the optical power of the LED spectrometer of the invention is about fivefold compared with designs of prior art. Furthermore, improvement of the efficiency of the LED radiation source and of that of the optics has brought a multiple augmentation in power to the wavelength spectrum sent out by the radiation source. In the design of the invention, concentrators (6) of non-imaging type are used to collimate the wavelength spectrum emitted by the LEDs (3).
Abstract:
Low cost and form factor spectrometers are disclosed. A spectrometer comprises a substrate, a plurality of optical sensors (979), a plurality of spectral filters (977), an optical manifold (976) and one or more processing elements (980). The plurality of spectral filters (977) and the one or more processing elements (980) are mounted on the substrate. The spectral filters (977) are fixedly positioned over at least a group of the optical sensors (979) and fixedly positioned with respect to the substrate. An optical manifold (976) is fixedly positioned over the spectral filters (977). The optical manifold (976) has a plurality of exit ports and an entrance port, wherein light entering the entrance port is transmitted to an interior portion of the optical manifold (976) and a portion of the light is transmitted from the exit ports through some of the spectral filters (977). The spectrometers are disclosed embedded in printing and scanning devices, computer companion devices, scope-type devices and the like.