摘要:
Submicron structures are written on a surface (12) by positioning in nanometer range proximity, preferably within current tunnelling range, of the surface a scanning tip (11) of a material that emits atoms upon application of an applied voltage of low magnitude. While the tip is maintained within said range, it is moved relative to the surface, and a series of short voltage pulses are concurrently applied between the tip and surface. These pulses cause atoms of tip material to directly transfer to the surface and concurrently cause remaining atoms (21) of tip material to migrate to the tip and continuously reform the tip and maintain its sharp configuration, thereby insuring uninterrupted writing ability. Various tip materials exhibiting low field evaporation potentials may be used; however, gold is preferred if deposition is to be under ambient conditions. Heating the tip enhances the ability of the material to emit atoms. The deposited structures (20) may be selectively sensed or erased by application of appropriate voltages.
摘要:
A method and apparatus for processing a fine pattern of a sample of one of an electronic device, molecular device and bioelemtn device, wherein a needle having a sharpened tip is disposed in opposed relation to the sample with a gap therebetween. A voltage is applied between the needle and the sample so as to enable a tunnel current and/or a field emission current to flow therebetween and the fine pattern is provided to correct the fine pattern by effecting at least one of removal, repositioning, annealing and film formation of at least one of individual atoms and individual molecules.
摘要:
Nanotube films and articles and methods of making the same are disclosed. A conductive article includes an aggregate of nanotube segments in which the nanotube segments contact other nanotube segments to define a plurality of conductive pathways along the article. The nanotube segments may be single walled carbon nanotubes, or multi-walled carbon nanotubes. The various segments may have different lengths and may include segments having a length shorter than the length of the article. The articles so formed may be disposed on substrates, and may form an electrical network of nanotubes within the the article itself. Conductive articles may be made on a substrate by forming a nanotube fabric on the substrate, and defining a pattern within the fabric in which the pattern corresponds to the conductive article. The nanotube fabric may be formed by growing the nanotube fabric on the substrate using a catalyst, for example, in which the catalyst is a gas phase catalyst, or in which the catalyst is a metallic gas phase catalyst. The nanotube fabric may be formed by depositing a solution of suspended nanotubes on the substrate. The deposited solution may be spun to create a spin-coating of the solution. The solution may be deposited by dipping the substrate into the solution. The nanotube fabric is formed by spraying an aerosol having nanotubes onto a surface of the substrate.
摘要:
Methods of positioning and orienting nanostructures, and particularly nanowires, on surfaces for subsequent use or integration. The methods utilize mask based processes alone or in combination with flow based alignment of the nanostructures to provide oriented and positioned nanostructures on surfaces. Also provided are populations of positioned and/or oriented nanostructures, devices that include populations of positioned and/or oriented nanostructures, systems for positioning and/or orienting nanostructures, and related devices, systems and methods.
摘要:
The invention provides a lithographic method referred to as 'dip pen' nanolithography (DPN). DPN utilizes a scanning probe microscope (SPM) tip (e.g., an atomic force microscope (AFM) tip) as a 'pen', a solid-state substrate (e.g., gold) as 'paper', and molecules with a chemical affinity for the solid-state substrate as 'ink'. Capillary transport of molecules from the SPM tip to the solid substrate is used in DPN to directly write patterns consisting of a relatively small collection of molecules in submicrometer dimensions, making DPN useful in the fabrication of a variety of microscale and nanoscale devices. The invention also provides substrates patterned by DPN, including submicrometer combinatorial arrays, and kits, devices and software for performing DPN. The invention further provides a method of performing AFM imaging in air. The method comprises coating an AFM tip with a hydrophobic compound, the hydrophobic compound being selected so that AFM imaging performed using the coated AFM tip is improved compared to AFM imaging performed using an uncoated AFM tip. Finally, the invention provides AFM tips coated with the hydrophobic compounds.
摘要:
A method of batch fabrication using established photolithographic techniques allowing nanoparticles or nanodevices to be fabricated and mounted into a macroscopic device in a repeatable, reliable manner suitable for large-scale mass production. Nanoparticles can be grown on macroscopic "modules" which can be easily manipulated and shaped to fit standard mounts in various devices.
摘要:
A method for fabricating scanning probe microscopy (SPM) probes is disclosed. The probes are fabricated by forming a structural layer on a substrate, wherein the substrate forms a cavity. A sacrificial layer is located between the substrate and the structural layer. Upon forming the structural layer, the sacrificial layer is selectively removed, and the probe is then released from the substrate. The substrate may then later be reused to form additional probes. Additionally, a contact printing method using a scanning probe microscopy probe is also disclosed.