摘要:
A piezoelectric element which includes an undercoat layer and a piezoelectric material layer that have been formed on a substrate, the undercoat layer being for controlling the crystallinity of the piezoelectric material layer. The piezoelectric material layer is configured of crystals having an ABO 3 -type structure which contains at least Pb at the A sites. In the undercoat layer, the surface that faces the interface with the substrate contains, at the A sites, at least Pb and another substance that differs in content from that in the piezoelectric material layer and, at the B sites, substances having a content ratio different from that in the piezoelectric material layer. Due to this, the undercoat layer has a given crystal structure that has better crystallinity than the piezoelectric material layer. In the layer of the undercoat layer which is located upper than the surface that faces the interface with the substrate, the content of the other substance contained in the A sites of the undercoat layer gradually changes from the surface that faces the interface with the substrate to the surface that faces the interface with the piezoelectric material layer, while the content ratio of the substances contained in the B sites gradually changes. Thus, the composition of the undercoat layer comes closer to that of the piezoelectric material layer.
摘要:
More in particular, the present invention relates to a piezoelectric device (1, 101) comprising at least two carbon fibre crossed yarns (2a, 2b; 102a, 102b), at the intersection of which a zinc oxide layer (3, 103) in nanorod form is arranged, wherein an end (4a, 4b) of each of said yarns (2a, 2b; 102a, 102b) is connected to an operative unit (5).
摘要:
There is provided a piezoelectric element which includes a first electrode which is formed on a substrate, a piezoelectric layer which is formed on the first electrode, and is formed from a compound oxide having an ABO 3 type perovskite structure in which potassium (K), sodium (Na), niobium (Nb), and manganese (Mn) are provided, and a second electrode which is formed on the piezoelectric layer. The manganese includes bivalent manganese (Mn 2+ ), trivalent manganese (Mn 3+ ), and tetravalent manganese (Mn 4+ ). A molar ratio (Mn 2+ /(Mn 3+ +Mn 4+ )) of the bivalent manganese to a sum of the trivalent manganese and the tetravalent manganese is equal to or greater than 0.31.
摘要:
A piezoelectric acoustic resonator with an adjustable temperature compensation capability is disclosed. The piezoelectric acoustic resonator includes: a piezoelectric acoustic reflection structure, a first electrode, a second electrode, a piezoelectric layer between the first electrode and the second electrode, and a temperature compensation layer; wherein the temperature compensation layer is a single-layer temperature compensation layer formed of Si x O y material, or a composite temperature compensation layer formed by stacking material with a positive temperature coefficient of sound velocity and material with a negative temperature coefficient of sound velocity; and the temperature compensation layer is configured to: perform reverse compensation for a temperature frequency shift caused by the first electrode, the piezoelectric layer and the second electrode in the piezoelectric acoustic resonator; wherein x:y is not equal to 1:2.
摘要:
A piezoelectric material that does not use lead and potassium and has a high piezoelectric constant and good insulating properties and a piezoelectric element that uses the piezoelectric material are provided. The piezoelectric material contains a perovskite-type metal oxide represented by general formula (1): (NaxBa1-y)(NbyTi1-y)O3 (1) (where 0.80≦̸x≦̸0.95 and 0.85≦̸y≦̸0.95), and an auxiliary component containing at least one selected from the group consisting of Si and B. A content of the auxiliary component on a metal basis is 0.001 parts by weight or more and 4.000 parts by weight or less relative to 100 parts by weight of the perovskite-type metal oxide.
摘要:
There is provided a lead- and potassium-free piezoelectric material having a high piezoelectric constant and a satisfactory insulation property and a piezoelectric element that includes the piezoelectric material. The piezoelectric material contains a perovskite-type metal oxide having the general formula (1): (NaxBa1-y)(NbyTi1-y)O3 (wherein x satisfies 0.80≤x≤0.95, and y satisfies 0.85≤y≤0.95); and at least one rare-earth element selected from La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, wherein the rare-earth element content is more than 0 mol % and 5 mol % or less of the amount of perovskite-type metal oxide. The piezoelectric element includes the piezoelectric material.