Abstract:
An apparatus for concentrating light and associated method of use is disclosed. This apparatus includes a first outer wall having an anterior end, a posterior end, an inner surface and an outer surface, the inner surface defining an interior portion, the interior portion having an anterior end and a posterior end, and a light source disposed within the interior portion. The first outer wall has an opening in the posterior end, the opening having an opening diameter. The interior portion has a substantially frusto-conical shape and has a cross-sectional diameter at the opening equal to the opening diameter and a second cross-sectional diameter near the anterior end that is less than the opening diameter and the inner surface is photo-reflective. The light passes through a sample through an aperture and a collector lens or a second outer wall. A transmission diffraction grating may be utilized.
Abstract:
The reported invention belongs to spectral interference devices and can be used for spectral research in various fields of technology. The objective of the present invention is to improve the optical characteristics of the spectrometer in which reduced loss of light from the radiation object on aberration is attained with a minimum number of optical elements produced at lower costs. The objective is achieved by the fact that the static Fourier spectrometer contains an input collimator optically coupled with the interferometric unit consisting of a beam splitter and at least two mirrors installed with the ability to create an interference image localized in the plane of the mirrors, and an image recording device optically coupled with the interferometric unit by means of the projective system with the ability to project the figure of the indicated interference image on the image recording device. Besides, the projective system includes a spherical mirror and an objective lens centered against the normal line to the optical surface of the mirror. The mirror and the objective lens are produced to enable optical radiation to pass through the objective lens from the interferometric unit to the spherical mirror, being reflected from it and passing through the same objective lens to the recording device. 4IL.
Abstract:
A spectral colorimetric apparatus includes a housing which includes a side wall. An outer surface of the side wall is an adjustment surface capable of adjusting a position of a light receiving member by moving in a state in which the light receiving member abuts on the adjustment surface. The light receiving member is supported by the side wall of the housing in a state in which the light receiving member abuts on the adjustment surface and receives a light beam that is dispersed by a concave surface reflection type diffraction element and passes through an opening portion. The adjustment surface is parallel to a tangential line at a part of a Rowland circle of the concave surface reflection type diffraction element, through which a light beam received by the light receiving member passes.