Abstract:
Exhaust gas is conducted via a selective catalytic reduction (SCR) catalytic converter (3) for the reduction of nitrogen oxides to form nitrogen, via an oxidation catalytic converter (4) for the oxidation of carbon monoxide and hydrocarbons to form carbon dioxide, and through a diesel particle filter (5) for the removal of particles. Urea solution, or a solution of some other water-soluble compound which releases ammonia, is used as a reducing agent. The reducing agent is dosed into the exhaust section upstream of the charging turbine (1). Exhaust gas generated by a diesel engine with a charging turbine and which, in addition to carbon monoxide, hydrocarbons, and particles, contain nitrogen oxides with a nitrogen-dioxide/nitrogen oxide ratio of 0.3-0.7, is conducted via a selective catalytic reduction (SCR) catalytic converter for the reduction of nitrogen oxides to form nitrogen, via an oxidation catalytic converter for the oxidation of carbon monoxide and hydrocarbons to form carbon dioxide, and through a diesel particle filter for the removal of particles. Urea solution, or a solution of some other water-soluble compound which releases ammonia, is used as a reducing agent for the SCR reaction. The reducing agent is dosed into the exhaust section upstream of the charging turbine. An independent claim is included for exhaust-gas purification device.
Abstract:
Mit der beschriebenen Vorrichtung kann ein Verfahren durchgeführt werden umfassend das Leiten des N 2 O und NO x enthaltenden Gases über eine Folge zweier Katalysatorbetten enthaltend einen oder mehrere mit Eisen beladene Zeolithe, die Zugabe eines Reduktionsmittels für NO x zwischen den Katalysatorbetten, das Einstellen einer Temperatur von weniger als 500°C im ersten und zweiten Katalysatorbett, das Einstellen eines Gasdruckes von mindestens 2 bar in den beiden Katalysatorbetten, und die Auswahl einer solchen Raumgeschwindigkeit im ersten und zweiten Katalysatorbett, so dass im ersten Katalysatorbett ein Abbau des N 2 O-Gehalts des Gases um höchstens bis zu 90%, bezogen auf den N 2 O Gehalt am Eingang des ersten Katalysatorbettes, erfolgt, und dass im zweiten Katalysatorbett ein weiterer Abbau des N 2 O-Gehalts des Gases um mindestens 30%, bezogen auf den N 2 O Gehalt am Eingang des zweiten Katalysatorbettes, erfolgt. Die erste Reaktionszone dient zum Abbau von N 2 O und in der zweiten Reaktionszone wird das NO x reduziert und zumindest ein Teil des verbliebenen N 2 O wird zersetzt. Die beschriebene Vorrichtung umfasst mindestens ein radial durchströmtes Katalysatorbett in Form eines Hohlzylinders sowie eine zwischen den Katalysatorbetten angeordnete Vorrichtung zur Einbringung eines gasförmigen Reduktionsmittels in den Strom des NO x und N 2 O enthaltenden Gases. Diese Vorrichtung umfasst einen Mischer, durch den das Gas nach Durchströmung des ersten Katalysatorbettes geleitet wird, und eine Zuleitung für Reduktionsmittel, die in den Raum hinter dem ersten Katalysatorbett und vor oder in den Mischer mündet. Das zu reinigende Gas wird nach Verlassen des Mischers durch das zweite Katalysatorbett geleitet.
Abstract:
A process for the production of a hydrocarbon product comprises contacting a feedstock with a catalyst composition comprising an active metal selected from platinum, palladium, nickel, cobalt, copper, ruthenium, rhodium and rhenium and an active porous material which is active for the isomerization of unsaturated hydrocarbons, wherein the feedstock comprises a fatty acid a fatty acid ester, a monoglyceride, a diglyceride or a triglyceride.
Abstract:
A honeycomb structure including pillar honeycomb units that include zeolite and an inorganic binder and have plural cells separated by a cell wall, the cells extending from a first end face to a second end face of the honeycomb unit along a longitudinal direction thereof, characterized in that the honeycomb unit includes zeolite exceeding 250 g/L with respect to apparent volume, zeolite exists in a center part of the cell wall in a thickness direction, and a surface of the cell wall has a greater proportion of zeolite than the center part of the cell wall in the thickness direction.
Abstract:
The method comprises the following steps: conduction of the gas containing N2O and NOx over a series of two catalyst beds consisting of one or more zeolites charged with iron; addition of a reduction agent for NOx between the catalyst beds; setting of a temperature of less than 500 °C in the first and second catalyst bed; setting of a gas pressure of at least 2 bar in the two catalyst beds; and the selection of a space velocity in the first and second catalyst bed that achieves a degradation of the N2O content of the gas in the first catalyst bed by a maximum of up to 90 %, in relation to the N2O content at the entrance to the catalyst bed and an additional degradation of the N2O content of the gas in the second catalyst bed by at least 30 % in relation to the N2O content at the entrance to the second catalyst bed. The first reaction zone is used to degrade the N2O and the second reaction zone reduces the NOx and breaks down at least part of the remaining N2O. The inventive device comprises at least one radially traversed catalyst bed.
Abstract:
Provided is an SCR catalyst article comprising a substrate having thereon a second catalyst composition downstream of a first catalyst composition, wherein the first and second catalyst compositions are different and wherein the first catalyst composition is an SCR catalyst composition and the second catalyst composition comprises an Fe-loaded small- or medium-pore molecular sieve, the small- or medium-pore molecular sieve having a silica-to-alumina ratio (SAR) of from 6 to 19.
Abstract:
A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100° C. and up to 550° C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.
Abstract:
A method is disclosed for the preparation of a metal exchanged microporous materials, e.g. metal exchanged silicoaluminophosphates or metal exchanged zeolites, or mixtures of metal exchanged microporous materials, comprising the steps of providing a dry mixture of a) one or more microporous materials that exhibit ion exchange capacity and b) one or more metal compounds; heating the mixture in a gaseous atmosphere containing ammonia and one or more oxides of nitrogen to a temperature and for a time sufficient to initiate and perform a solid state ion exchange of ions of the metal compound and ions of the microporous material; and obtaining the metal-exchanged microporous material.