Abstract:
In the spectroscopy module 1, a light absorbing layer 6 having a light-passing hole 6a through which light L1 advancing into a spectroscopic portion 3 passes and a light-passing hole 6b through which light L2 advancing into a light detecting portion 4a of a light detecting element 4 passes is integrally formed by patterning. Therefore, it is possible to prevent deviation of the relative positional relationship between the light-passing hole 6a and the light-passing hole 6b. Further, since the occurrence of stray light is suppressed by the light absorbing layer 6 and the stray light is absorbed, the light detecting portion 4a of the light detecting element 4 can be suppressed from being made incident. Therefore, according to the spectroscopy module 1, it is possible to improve the reliability.
Abstract:
Verfahren und Messanordnung zur Verbesserung der Signalauflösung bei der Gasabsorptionsspektroskopie, mit einer Messanordnung 1, die eine Laserlichtquelle 2 und einen Lichtdetektor 3 aufweist, zwischen denen eine Messkammer 4 für die Gasdetektion angeordnet ist. Die Messanordnung 1 weist außerdem eine Lichtquellensteuereinheit 9 für die Laserlichtquelle 2 und eine Auswerteeinheit für den Lichtdetektor 3 auf. Die Erfindung schlägt vor, zur Verbesserung der Signalauflösung insbesondere das Intensitätsrauschen der Messanordnung 1 zu mindern, indem die von Rückreflektionen, Etalons, Self-Mixing-Effekten oder dergleichen her rührenden störenden Signalanteile zeitlich gemittelt werden. Dies geschieht mittels einem der Laserlichtquelle 2 nachgeordneten Lichtmodulator 6, der die optische Weglänge des Lichtstrahls 5 kontinuierlich periodisch beeinflusst. Der Lichtmodulator 6 weist dazu ein Optikelement 7 mit einstellbarem Brechungsindex auf, das die Phase des Laserlichtes des Lichtstrahls 5 kontinuierlich zyklisch verändert. ( Figur 1 )
Abstract:
Ein Handfarbmessgerät umfasst ein Gehäuse mit einer opto-elektronischen Messeinheit. Diese umfasst eine Optikanordnung zum Empfangen von Messlicht und eine vom Messlicht beaufschlagte Sensoranordnung, welche das Messlicht in elektrische Messsignale umwandelt und diese zu digitalen Messdaten verarbeitet. Die Messeinheit (M) besteht aus einer asphärischen Eingangslinse (L 1 ), einer Blende (B) zur Begrenzung des Einfallswinkelbereichs, einem depolarisierenden Diffusor (D), einer Sensor-Linse (L 2 ) und mindestens drei durch Farbfilter (F 1 , F 2 , F 3 ) auf unterschiedliche spektrale Empfindlichkeiten sensibilisierte Sensoren (S 1 , S 2 , S 3 ). Die Blende (B) liegt im Wesentlichen in der Brennebene der Eingangslinse (L 1 ), der Diffusor (D) ist in unmittelbarer Nähe der Blende (B) und in der Brennebene der Sensor-Linse (L 2 ) angeordnet. Die Filter (F 1 , F 2 , F 3 ) und die Sensoren (S 1 , S 2 , S 3 ) sind nahe der optischen Achse (A) angeordnet und werden mit im Wesentlichen parallelem Messlicht beaufschlagt. Die Filter (F 1 , F 2 , F 3 ) sind auf die spektralen Charakteristiken der Color Matching Functions des Standard-Beobachters nach CIE 1931 ausgelegt. Für Umgebungslichtmessungen kann ein zusätzlicher Diffusor (D E ) der Eingangslinse vorgesetzt werden.
Abstract:
The present invention relates to optical devices for imaging and spectroscopic applications where optical field curvature is a predominant characteristic. In particular, the invention relates to imaging optics and an optical device for mapping a curved image field. The optical device for mapping a curved image field comprises a focal plane array 20 having a plurality of light processing elements 21 and a focal plane adapter 110 mounted in front of the focal plane array 20 configured to transmit the curved image field to the light processing elements 21 of the focal plane array 20. The focal plane adapter 110 comprises a plurality of waveguides 111 wherein first ends of the waveguides 111 facing the incident curved image field are arranged on a curved surface 12, the curved surface 12 being adapted to a profile of an optical field curvature of the curved image field so that the plurality of waveguides 111 divide the curved image field along a curved focal plane of the image field into a plurality of image segments. The second ends of the waveguides 111 are allocated to the light processing elements 21 to map the plurality of image segments onto the allocated light processing elements 21.
Abstract:
The present invention relates to a color measurement device for measuring the color of a target object, the device comprising: an illumination system including an illumination source having at least a white portion in combination with a chromatic portion, the illumination system being structured to generate light in all portions of the visible spectrum and provide spatially uniform illumination at a given target distance from the target object sufficient to spatially over-illuminate a predetermined target area on the target object, wherein the illumination system further comprises an illumination lens structured for operative association with the illumination source, the illumination lens comprising at least one optically fast lens, and at least one spatial intensity filter positioned in operative association with the illumination lens; an optical collection system structured for non-contact color measurement of the target object, wherein the optical collection system is positioned in the device to function at a distance from the target object and receive light reflected therefrom, the optical collection system further comprising an image-based collection optic having a field stop at an image plane to define a target area plane for the target object; and a color engine in communication with the optical collection system configured for spectrally analyzing light detected by the optical communication system.
Abstract:
An image processing system is used for dentistry. Upon creating a false tooth of a patient (59), a plurality of illuminating light of LEDs with different wavelengths emit light and a photographing apparatus (1A) photographs a tooth portion of the patient (59), thereby obtaining image data. The image data is sent to a dentistry filing system (2A) serving as a processing apparatus, and color reproducing data is obtained by calculation. The color reproducing data is sent to a dentistry factory (55) via a public line. Data is searched from a database (56) for calculating a ceramic compounding ratio, compound data of the ceramic false tooth is obtained, matching the color of the tooth portion of the patient (59), and the false tooth approximate to the tooth color of the patient (59) is created. The photographing apparatus has a control unit (18) which switches between a spectroscopic image capturing mode and a moving image capturing mode.
Abstract:
Since the spectroscopy module 1 is provided with a plate-shaped body portion 2, the body portion 2 is made thin so that the spectroscopy module 1 can be downsized. Further, since the body portion 2 is formed in a plate shape, for example, a wafer process is used to produce the spectroscopy module 1. In other words, a lens portion 3, a diffracting layer 4, a reflecting layer 6 and a light detecting element 7 are provided in a matrix form on a glass wafer, which can be made into many body portions 2. Then, the glass wafer is subjected to dicing, thus making it possible to produce many spectroscopy modules 1. In this way, it is possible to produce the spectroscopy module 1 easily on a large scale.
Abstract:
A spectrophotometer has a first photodetector (24) and a second photodetector (25) which is displaced spatially from the first photodetector in the direction of increasing wavelength in the spectrum. At any given time the second photodetector receives light at a wavelength which is substantially greater than that being received simultaneously by the first photodetector at that time. The first photodetector has a first range of wavelengths over which it is operable and a first upper operating limit, and the second photodetector has a second range of wavelengths over which it is operable and a second upper operating limit, the second range overlapping the first range and the second upper operating limit being greater than the first upper operating limit. Thus the range of operation is extended, and data in two different ranges is processed simultaneously. The spectrophotometer comprises a housing (1) containing a light source (11), a monochromator (15, 16, 18) and the photodetectors, there being a fibre optic connected to a probe (2) for transmitting light from the light source to a sample to be analysed and receiving light from the sample. Optical components are mounted to a chassis (26) of the housing rigidly, the chassis being connected to the housing by shock absorbing mounts (28, 29). The light source is mounted to the housing by means of an adjuster (24) providing for adjustment laterally with respect to the optical axis of the light source.