摘要:
The invention relates to a micro-reactor (100) for observing small particles, cells, bacteria, viruses or protein molecules in a fluid. The micro-reactor shows a first channel (106) formed between two layers (102, 104) for containing the fluid, with an inlet (112) and an outlet (114), the two layers separated by a first distance. A likewise second channel (108) with an inlet (118) and an outlet (116) is placed adjacent to the first channel. A gap connects the first channel and the second channel, at the gap at least one layer showing a window (120) transparent to the method of inspection and at the window the two layers being separated by a very small distance of, for example, 1 µm or less. The micro-reactor may be used with an optical microscope (in which all particles are in focus), inspection with a Scanning Transmission Electron Microscope (in which the range of the electrons is limited), inspection with soft X-rays in the 250-500 eV range (also showing a limited range), etc. A method of using the micro-reactor includes applying a gradient over the gap, thereby causing the particles to cross the gap. The gradient may be static or dynamic, and may be a gradient in concentration, of a chemical or biological material, in pressure, in temperature, in electric potential, or in magnetic field. By detecting a property of the particles upstream in the first channel, e.g. using fluorescent labels on the particles, and then applying a pressure burst over the channels when the property meets certain preset criteria, only selected particles can be placed in the gap.
摘要:
Methods and apparatus are disclosed for providing an X-ray shield within an ultra-high vacuum enclosure. A shell is fabricated, leak-tested, filled with an X-ray shielding material, and sealed. An elongated twisted X-ray shield can be deployed within a pump-out channel of an electron microscope or similar equipment. The shield can incorporate lead within a stainless-steel shell, with optional low-Z cladding outside the shell. Further variations are disclosed.
摘要:
The invention relates to an axial alignment assembly (100) comprising a first body and a second body. The first body has a substantially cylindrical outer jacket, as well as a first alignment axis. The second body comprises a substantially cylindrical inner jacket, and has a second alignment axis. The second body is positioned with respect to said first body in such a way that said inner jacket faces said outer jacket and in between said inner jacket and said outer jacket a substantially annular recess is formed. The axial alignment assembly further comprises a plurality of resilient elements that are positioned within said annular recess, wherein each resilient element is in contact with said outer jacket of said first body and with said inner jacket of said second body. Each resilient element exerts a force onto said outer jacket and onto said inner jacket for aligning said first alignment axis and said second alignment axis.
摘要:
The invention relates to a composite structure of a sample carrier 20 and a sample holder 30 for use in a TEM, for example. The sample carrier is hereby separately embodied from the sample holder. Although such compositions are already known, the known compositions are very fragile constructions. The sample carrier according to the invention can be formed from a strip of metal, and is a simple and cheap element. Using resilient force, it clamps onto or into the sample holder. The portion of the sample holder to which the sample carrier couples also has a simple form. The sample carrier can couple to the sample holder in vacuum using a coupling tool.
摘要:
A sample inspection device 200 includes at least a chamber 231 formed between a top electron transparent layer 217 and a bottom electron transparent layer 218 for holding a sample. Multiple pillars 212 are arranged within the chamber. The sample inspection device includes a window 201 covering at least one of the multiple pillars 212. Various methods and devices are provided for searching the optimum sample condition of a sample for cryogenic electron microscopy. Multiple samples with different sample conditions may be screened using a sample inspection device having an additional, second, chamber formed between the top electron transparent layer and the bottom electron transparent layer.
摘要:
Methods and systems for implementing laser-based phase plate image contrast enhancement are disclosed herein. An example method at least includes forming at least one optical peak in a diffraction plane of an electron microscope, and directing an electron beam through the at least one optical peak at a first location, where the first location determines an amount of phase manipulation the optical peak imparts to an electron of the electron beam.
摘要:
The invention relates to a micro-reactor (100) for observing small particles, cells, bacteria, viruses or protein molecules in a fluid. The micro-reactor shows a first channel (106) formed between two layers (102, 104) for containing the fluid, with an inlet (112) and an outlet (114), the two layers separated by a first distance. A likewise second channel (108) with an inlet (118) and an outlet (116) is placed adjacent to the first channel. A gap connects the first channel and the second channel, at the gap at least one layer showing a window (120) transparent to the method of inspection and at the window the two layers being separated by a very small distance of, for example, 1 µm or less. The micro-reactor may be used with an optical microscope (in which all particles are in focus), inspection with a Scanning Transmission Electron Microscope (in which the range of the electrons is limited), inspection with soft X-rays in the 250-500 eV range (also showing a limited range), etc. A method of using the micro-reactor includes applying a gradient over the gap, thereby causing the particles to cross the gap. The gradient may be static or dynamic, and may be a gradient in concentration, of a chemical or biological material, in pressure, in temperature, in electric potential, or in magnetic field. By detecting a property of the particles upstream in the first channel, e.g. using fluorescent labels on the particles, and then applying a pressure burst over the channels when the property meets certain preset criteria, only selected particles can be placed in the gap.
摘要:
The invention relates to a transfer mechanism for transferring a specimen (2) from a first position in a first holder ( 40 ) to a second position in a second holder ( 10 ) and/or vice versa, each holder ( 10 , 40 ) equipped to detachably hold the specimen, the transfer of the specimen between the holders taking place in a transfer position different from the second position, characterized in that when the specimen is transferred between the holders ( 10 , 40 ) a mechanical guidance mechanism positions the holders with a mutual accuracy higher than the mutual accuracy in the second position, and said mechanical guidance mechanism not positioning at least one of the holders ( 10 , 40 ) when the specimen is in the second position. The mechanical guidance mechanism may comprise extra parts ( 50 ). At least one of the holders ( 40 ) may be equipped to hold a multitude of specimens.