摘要:
The present invention provides a technology for preventing the generation of a pyrochlore phase, which is an impurity phase, in forming a PZT thin film by sputtering, without using a conventional seed layer. The present invention provides a PZT thin film laminate including: a Si substrate 10; a TiOx layer 4 serving as a platinum-adhesion layer on the Si substrate 10; a Pt electrode layer 5 on the TiOx layer 4; a Ti thin film layer 6 on the Pt electrode layer 5; and a PZT thin film layer 7 on the Ti thin film layer 6. The Ti thin film layer 6 can have a thickness of 1 nm or more and 10 nm or less.
摘要:
A multi-layered film includes a first electroconductive layer, a dielectric layer, and a second electroconductive layer, which are sequentially layered and disposed on a main surface of a substrate. A lower surface of the dielectric layer comes into contact with an upper surface of the first electroconductive layer, an upper surface and an side surface of the dielectric layer is coated with the second electroconductive layer, and an side end of a portion at which the first electroconductive layer directly overlaps the second electroconductive layer is located inside a side end of the substrate on the main surface of the substrate.
摘要:
A multi-layered film includes an electroconductive layer made of platinum (Pt), a seed layer including lanthanum (La), nickel (Ni), and oxygen (O), and a dielectric layer being preferentially oriented in a c-axis direction, which are at least sequentially disposed on a main surface of a substrate made of silicon.
摘要:
A method for forming a dielectric thin film that forms a PZT thin film having a (100) / (001) orientation. After a seed layer is formed by adhering PbO gas to a surface of a substrate, a voltage is applied to a target of lead zirconate titanate (PZT) and perform sputtering, while the substrate is heated inside of an evacuated vacuum chamber. Then, a PZT thin film is formed on the surface of the substrate. Because Pb and O are supplied from the seed layer, a PZT film having a (001) / (100) orientation can be formed without lack of Pb.
摘要:
A method of manufacturing a multi-layered film at least includes: a step A of forming an electroconductive layer on a substrate; a step B of forming a seed layer so as to coat the electroconductive layer; and a step C of forming a dielectric layer so as to coat the seed layer. In the step B, a compound including strontium (Sr), ruthenium (Ru), and oxygen (O) is formed as the seed layer by a sputtering method. In the step C, where a substrate temperature is defined by Td when the dielectric layer is formed, 560°C‰¤Td‰¤720°C is determined.
摘要:
The present invention provides a technology for preventing the generation of a pyrochlore phase, which is an impurity phase, in forming a PZT thin film by sputtering, without using a conventional seed layer. The present invention provides a PZT thin film laminate including: a Si substrate 10; a TiOx layer 4 serving as a platinum-adhesion layer on the Si substrate 10; a Pt electrode layer 5 on the TiOx layer 4; a Ti thin film layer 6 on the Pt electrode layer 5; and a PZT thin film layer 7 on the Ti thin film layer 6. The Ti thin film layer 6 can have a thickness of 1 nm or more and 10 nm or less.
摘要:
A dielectric film forming apparatus and a method for forming a dielectric film so as to form a dielectric film with a (100) / (001) orientation. A dielectric film forming apparatus 10 includes a deposition preventive plate heating portion 19 that heats a deposition preventive plate 34 disposed in a position where particles discharged from a target 21 adhere. Sputtering gas is introduced from a sputtering gas introduction unit 14 into a vacuum chamber 11. The deposition preventive plate 34 is heated to a temperature higher than a film forming temperature so as to emit vapor from a thin film adhered to the deposition preventive plate 34. After a seed layer is formed on a substrate 31, the substrate 31 is heated to the film forming temperature, and AC voltage is applied to the target 21 from a power supply 13 and then, the target 21 is sputtered so as to form a dielectric film on the substrate 31.